
ABSTRACT

Title of Dissertation: EXPANDING ROBUSTNESS IN RESPONSIBLE AI
FOR NOVEL BIAS MITIGATION

Samuel Dooley
Doctor of Philosophy, 2023

Dissertation Directed by: John Dickerson
Department of Computer Science

Conventional belief in the fairness community is that one should first find the highest

performing model for a given problem and then apply a bias mitigation strategy. One starts with

an existing model architecture and hyperparameters, and then adjusts model weights, learning

procedures, or input data to make the model fairer using a pre-, post-, or in-processing bias

mitigation technique. While existing methods for de-biasing machine learning systems use

a fixed neural architecture and hyperparameter setting, I instead ask a fundamental question

which has received little attention: how much does model-bias arise from the architecture and

hyperparameters, and ask how can we exploit the extensive research in the fields of neural

architecture search (NAS) and hyperparameter optimization (HPO) to search for more inherently

fair models.

By thinking of bias mitigation in this new way, we really are expanding our conceptualization

of robustness in responsible AI. Robustness is an emerging aspect of responsible AI and focuses



on maintaining model performance in the face of uncertainties and variations for all subgroups of

a data population. Often robustness deals with protecting models from intentional or unintentional

manipulations in data, while handling noisy or corrupted data and preserving accuracy in real-

world scenarios. In other words, robustness, as commonly defined, examines the output of a system

under changes to input data. However, I will broaden the idea of what robustness in responsible

AI is in a manner which defines new fairness metrics, yields insights into robustness of deployed

AI systems, and proposes an entirely new bias mitigation strategy.

This thesis explores the connection between robust machine learning and responsible AI. It

introduces a fairness metric that quantifies disparities in susceptibility to adversarial attacks. It

also audits face detection systems for robustness to common natural noises, revealing biases in

these systems. Finally, it proposes using neural architecture search to find fairer architectures,

challenging the conventional approach of starting with accurate architectures and applying bias

mitigation strategies.
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He talks, he talks, how he talks, and waves

his arms.

He fills up ornate vases.

Twenty-seven an hour. And keeps the

words in with cork stoppers

(If you hold the vases to your ears you can

hear the muted syllables colliding into

each other).

I want vases, some of them ornate,

But simple ones too.

And most of them

Will have flowers

On Verbosity

Annette Ryan

Chapter 1: Introduction

Artificial Intelligence (AI) has emerged as a transformative technology with the potential to

revolutionize various aspects of our lives. From personalized recommendations to autonomous

vehicles, AI systems are becoming increasingly prevalent in our daily interactions. However, as

AI becomes more advanced and integrated into society, concerns about its responsible use have
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gained significant attention.

Responsible AI refers to an ethically-informed and transparent development, deployment,

and utilization of AI technologies, ensuring that they are designed and used in a manner that

respects human values, rights, and well-being. The need for responsible AI arises from the

potential risks associated with its widespread adoption. AI systems can inadvertently perpetuate

bias, discrimination, and reinforce societal inequalities if not developed and implemented with

care. For example, biased training data can lead to discriminatory outcomes, such as AI-powered

hiring algorithms favoring certain demographics. Machine learning is applied to a wide variety of

socially-consequential domains, e.g., credit scoring, fraud detection, hiring decisions, criminal

recidivism, loan repayment, and face recognition (Mukerjee et al., 2002; Ngai et al., 2011;

Learned-Miller et al., 2020; Barocas et al., 2017), with many of these applications impacting

the lives of people more than ever — often in biased ways (Buolamwini and Gebru, 2018; Joo

and Kärkkäinen, 2020; Wang et al., 2020b). Dozens of formal definitions of fairness have been

proposed (Narayanan, 2018), and many algorithmic techniques have been developed for debiasing

according to these definitions (Verma and Rubin, 2018).

Automated decision-making systems that are driven by data are being used in a variety

of different real-world applications, creating the risk that these systems will perpetuate and/or

create harms to people. In many cases, these systems make decisions on data points that represent

humans (e.g., targeted ads (Speicher et al., 2018; Ribeiro et al., 2019), personalized recommen-

dations (Singh and Joachims, 2018; Biega et al., 2018), hiring (Schumann et al., 2019, 2020),

credit scoring (Khandani et al., 2010), or recidivism prediction (Chouldechova, 2017)). In such

scenarios, there is often concern regarding the fairness of outcomes of the systems (Barocas and

Selbst, 2016; Galhotra et al., 2017). This has resulted in a growing body of work from Responsible
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AI community that—drawing on prior legal and philosophical doctrine—aims to define, measure,

and (attempt to) mitigate manifestations of unfairness in automated systems (Chouldechova, 2017;

Feldman et al., 2015a; Leben, 2020; Binns, 2017).

Responsible AI aims to address such concerns by emphasizing fairness, accountability,

transparency, and inclusivity in AI development and deployment processes. One crucial aspect of

responsible AI is fairness. AI systems should be designed to treat all individuals fairly and without

discrimination. This means avoiding bias in data collection, ensuring diverse representation during

the development process, and regularly auditing AI algorithms for unintended biases. Additionally,

responsible AI involves being accountable for the outcomes of AI systems. Developers and orga-

nizations should take responsibility for any harm caused by their AI technologies and implement

mechanisms for redress and accountability.

Transparency is another fundamental principle of responsible AI. Users and stakeholders

should have access to understandable and explainable AI systems. This means that AI algorithms

should be designed in a way that allows for clear explanations of their decision-making processes.

Transparent AI fosters trust, enables users to understand how AI systems work, and helps identify

and rectify any potential biases or errors.

Responsible AI also emphasizes inclusivity, ensuring that the benefits and opportunities

created by AI are accessible to all. This involves considering the needs and perspectives of diverse

populations during AI development, addressing issues of digital divide and accessibility, and

actively working towards reducing biases and disparities present in AI systems.

Another emerging aspect of Responsible AI is the robustness of systems. In traditional

machine learning, robustness refers to the ability of a model to maintain its performance and

generalization capabilities even in the face of uncertainties, adversarial attacks, or variations in the
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input data. A robust model is not only accurate on the training data but also exhibits resilience

to perturbations, noise, and outliers that it may encounter during deployment. The importance

of robustness arises from the fact that real-world data is often noisy, incomplete, and subject

to unpredictable variations. While traditional machine learning algorithms focus on optimizing

for average-case scenarios, robust machine learning aims to handle the worst-case scenarios and

mitigate the risks associated with unpredictable inputs.

Robustness in machine learning encompasses various dimensions, each presenting unique

challenges and trade-offs. One prominent aspect is adversarial robustness, which examines the

model’s vulnerability to adversarial attacks, where malicious actors deliberately manipulate the

input data to deceive or mislead the model’s predictions. Adversarial attacks have demonstrated

the susceptibility of machine learning models to subtle perturbations that are often imperceptible

to human observers. Developing models that are resistant to such attacks is crucial for security-

sensitive applications. I will explore this topic in depth in Chapter 2. Most of the initial work on

fairness in machine learning considered notions that were one-shot and considered the model and

data distribution to be static (Zafar et al., 2019, 2017c; Chouldechova, 2017; Barocas and Selbst,

2016; Dwork et al., 2012; Zemel et al., 2013). Recently, there has been more work exploring

notions of fairness that are dynamic and consider the possibility that the world (i.e., the model

as well as data points) might change over time (Heidari et al., 2019; Heidari and Krause, 2018;

Hashimoto et al., 2018; Liu et al., 2018b). Our proposed notion of robustness bias has subtle

difference from existing one-shot and dynamic notions of fairness in that it requires each partition

of the population be equally robust to imperceptible changes in the input (e.g., noise, adversarial

perturbations, etc).

Another dimension of robustness focuses on handling noisy or corrupted data. Real-world
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datasets may contain outliers, missing values, or measurement errors, which can significantly

impact the performance of machine learning models. Robust techniques that can effectively handle

such anomalies and preserve the model’s accuracy and reliability are essential.

We explore robustness to noisy or corrupted data in Chapter 3, by auditing face detection

systems and show deeper and more pernicious forms of robustenss bias in these systems. Face

detection identifies the presence and location of faces in images and video. Automated face

detection is a core component of myriad systems—including face recognition technologies (FRT),

wherein a detected face is matched against a database of faces, typically for identification or

verification purposes. FRT-based systems are widely deployed (Hartzog, 2020; Derringer, 2019;

Weise and Singer, 2020). Automated face recognition enables capabilities ranging from the

relatively morally neutral (e.g., searching for photos on a personal phone (Google, 2021a)) to

morally laden (e.g., widespread citizen surveillance (Hartzog, 2020), or target identification in

warzones (Marson and Forrest, 2021)). Legal and social norms regarding the usage of FRT are

evolving (e.g., Grother et al., 2019). For example, in June 2021, the first county-wide ban on its

use for policing (see, e.g., Garvie, 2016) went into effect in the US (Gutman, 2021). Some use

cases for FRT will be deemed socially repugnant and thus be either legally or de facto banned from

use; yet, it is likely that pervasive use of facial analysis will remain—albeit with more guardrails

than today (Singer, 2018).

One such guardrail that has spurred positive, though insufficient, improvements and widespread

attention is the use of benchmarks. For example, in late 2019, the US National Institute of Stan-

dards and Technology (NIST) adapted its venerable Face Recognition Vendor Test (FRVT) to

explicitly include concerns for demographic effects (Grother et al., 2019), ensuring such concerns

propagate into industry systems. Yet, differential treatment by FRT of groups has been known for
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at least a decade (e.g., Klare et al., 2012; El Khiyari and Wechsler, 2016), and more recent work

spearheaded by Buolamwini and Gebru (2018) uncovers unequal performance at the phenotypic

subgroup level. That latter work brought widespread public, and thus burgeoning regulatory,

attention to bias in FRT (e.g., Lohr, 2018; Kantayya, 2020).

One yet unexplored benchmark examines the bias present in a model’s robustness (e.g., to

noise, or to different lighting conditions), both in aggregate and with respect to different dimensions

of the population on which it will be used. Many detection and recognition systems are not built in

house, instead adapting an existing academic model or by making use of commercial cloud-based

“ML as a Service” (MLaaS) platforms offered by tech giants such as Amazon, Microsoft, Google,

Megvii, etc. I will present the first of its kind detailed benchmark robustness benchmark of six

different face detection models, for fifteen types of realistic noise (Hendrycks and Dietterich,

2019), and on four well-known datasets. Across all the datasets and systems, I generally find

that photos of individuals who are older, masculine presenting, of darker skin type, or have dim

lighting are more susceptible to errors than their counterparts in other identities.

Addressing robustness in machine learning involves a combination of algorithmic design,

feature engineering, and data preprocessing techniques. These approaches seek to make models

more resilient to uncertainties and perturbations, either by introducing regularization mechanisms,

utilizing ensemble methods, or leveraging domain knowledge to guide the learning process.

In this thesis, I’ll broaden and deepen the connection between robust machine learning and

responsible AI. In Chapter 2, I define a new fairness metric in Responsible AI which quantifies

the disparity between groups with respect to how susceptible they are to adversarial attack. In

Chapter 3, I audit existing academic and commercial face detection systems for their robustness to

types of common natural noises. Finally, in Chapter chapter 4, I expand the conceptualization of
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robustness to include notions of model architecture and hyperparameters, and propose a novel bias

mitigation techniques which employs neural architecture search to find more fair architectures.

Conventional wisdom is that in order to effectively mitigate bias, we should start by selecting

a model architecture and set of hyperparameters which are optimal in terms of accuracy and then

apply a mitigation strategy to reduce bias while minimally impacting accuracy. As datasets become

larger and training becomes more computationally intensive, especially in the case of computer

vision and natural language processing, it is becoming increasingly more common in applications

to start with a very large pretrained model, and then fine-tune for the specific use-case (Chi et al.,

2017; Käding et al., 2016; Ouyang et al., 2016; Too et al., 2019). While existing methods for

de-biasing machine learning systems use a fixed neural architecture and hyperparameter setting, I

instead ask a fundamental question which has received little attention: how much does model-bias

arise from the architecture and hyperparameters? I further ask whether we can we exploit the

extensive research in the fields of neural architecture search (NAS) (Elsken et al., 2019) and

hyperparameter optimization (HPO) (Feurer and Hutter, 2019) to search for more inherently fair

models.

Many debiasing algorithms fit into one of three (or arguably four (Savani et al., 2020))

categories: pre-processing (e.g., Feldman et al., 2015b; Ryu et al., 2018; Quadrianto et al., 2019;

Wang and Deng, 2020), in-processing (e.g., Zafar et al., 2017b, 2019; Donini et al., 2018; Goel

et al., 2018; Padala and Gujar, 2020; Wang and Deng, 2020; Martinez et al., 2020; Nanda et al.,

2021; Diana et al., 2020; Lahoti et al., 2020), or post-processing (e.g., Hardt et al., 2016; Wang

et al., 2020b). I, however, pose the simple question, what if these approaches are using an

architecture which is inherently less fair than another architecture? To explore this topic, I employ

neural architecture search.
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Neural architecture search (NAS) is a field of research that focuses on automating the

design and optimization of neural network architectures. It aims to discover or construct neural

network structures that achieve high performance on various tasks while reducing the manual

effort required for architecture engineering. Traditionally, neural network architectures were

designed by human experts based on their domain knowledge and intuition. However, as deep

learning models have grown in complexity and scale, manually designing architectures that yield

optimal performance has become increasingly challenging and time-consuming. NAS approaches

employ various strategies to automatically explore the vast search space of possible architectures.

One common technique is to use reinforcement learning or evolutionary algorithms to iteratively

generate, evaluate, and refine architectures. These algorithms leverage performance feedback

from the training process to guide the search towards architectures with improved performance.

NAS algorithms often incorporate additional components like performance predictors or surrogate

models, which help estimate the performance of unseen architectures based on their characteristics.

These models aid in efficiently exploring the architecture space and reduce the computational cost

associated with evaluating each architecture.

Motivated by the belief that the inductive bias of a model architecture is more important than

the bias mitigation strategy, I’ll use NAS to take a different approach to bias mitigation. We show

that finding an architecture that is more fair offers significant gains compared to conventional bias

mitigation strategies in the domain of face recognition, a task that is notoriously challenging to

de-bias. To this end, I’ll conduct the first neural architecture search for fairness, jointly with a

search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other

competitive architectures in terms of accuracy and fairness on the two most widely used datasets

for face identification: CelebA and VGGFace2. This work challenges the assumption that bias
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mitigation pipelines should default to existing popular architectures which were optimized for

accuracy — instead I’ll show that it may be more beneficial to begin with a fairer architecture as

the foundation of such pipelines.
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You gave up on expecting things to make

sense

Knew at some point this would not be a

puzzle you would ever complete

So you learn to hold it all

bodies that are home

and how the days unfold

one after the next

A continuous scroll of doing your best

and trusting

what the darkness will hold

Call it Love

Jena Schwartz

Chapter 2: Adversarial Robustness

This work was done in collaboration with my co-first author Vedant Nanda, as well as Sahil

Singla, John P. Dickerson, and Soheil Feizi, and was presented at FAccT, 2021 (Nanda et al.,

2021).

Deep neural networks (DNNs) are increasingly used in real-world applications (e.g. facial

recognition). This has resulted in concerns about the fairness of decisions made by these models.
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Various notions and measures of fairness have been proposed to ensure that a decision-making

system does not disproportionately harm (or benefit) particular subgroups of the population. In

this chapter, we argue that traditional notions of fairness that are only based on models’ outputs

are not sufficient when the model is vulnerable to adversarial attacks. We argue that in some cases,

it may be easier for an attacker to target a particular subgroup, resulting in a form of robustness

bias. We show that measuring robustness bias is a challenging task for DNNs and propose two

methods to measure this form of bias. We then conduct an empirical study on state-of-the-art

neural networks on commonly used real-world datasets such as CIFAR-10, CIFAR-100, Adience,

and UTKFace and show that in almost all cases there are subgroups (in some cases based on

sensitive attributes like race, gender, etc) which are less robust and are thus at a disadvantage. We

argue that this kind of bias arises due to both the data distribution and the highly complex nature

of the learned decision boundary in the case of DNNs, thus making mitigation of such biases a

non-trivial task. Our results show that robustness bias is an important criterion to consider while

auditing real-world systems that rely on DNNs for decision making.

2.1 Introduction

Automated decision-making systems that are driven by data are being used in a variety of

different real-world applications. In many cases, these systems make decisions on data points

that represent humans (e.g., targeted ads (Speicher et al., 2018; Ribeiro et al., 2019), personalized

recommendations (Singh and Joachims, 2018; Biega et al., 2018), hiring (Schumann et al., 2019,

2020), credit scoring (Khandani et al., 2010), or recidivism prediction (Chouldechova, 2017)). In

such scenarios, there is often concern regarding the fairness of outcomes of the systems (Barocas
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and Selbst, 2016; Galhotra et al., 2017). This has resulted in a growing body of work from the

nascent Fairness, Accountability, Transparency, and Ethics (FATE) community that—drawing

on prior legal and philosophical doctrine—aims to define, measure, and (attempt to) mitigate

manifestations of unfairness in automated systems (Chouldechova, 2017; Feldman et al., 2015a;

Leben, 2020; Binns, 2017).

Most of the initial work on fairness in machine learning considered notions that were

one-shot and considered the model and data distribution to be static (Zafar et al., 2019, 2017c;

Chouldechova, 2017; Barocas and Selbst, 2016; Dwork et al., 2012; Zemel et al., 2013). Recently,

there has been more work exploring notions of fairness that are dynamic and consider the possibility

that the world (i.e., the model as well as data points) might change over time (Heidari et al., 2019;

Heidari and Krause, 2018; Hashimoto et al., 2018; Liu et al., 2018b). Our proposed notion of

robustness bias has subtle difference from existing one-shot and dynamic notions of fairness in

that it requires each partition of the population be equally robust to imperceptible changes in the

input (e.g., noise, adversarial perturbations, etc).

We propose a simple and intuitive notion of robustness bias which requires subgroups of

populations to be equally “robust.” Robustness can be defined in multiple different ways (Szegedy

et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016). We take a general definition which

assigns points that are farther away from the decision boundary higher robustness. Our key

contributions are as follows:

• We define a simple, intuitive notion of robustness bias that requires all partitions of the

dataset to be equally robust. We argue that such a notion is especially important when

the decision-making system is a deep neural network (DNN) since these have been shown
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to be susceptible to various attacks (Carlini and Wagner, 2017; Moosavi-Dezfooli et al.,

2016). Importantly, our notion depends not only on the outcomes of the system, but also on

the distribution of distances of data-points from the decision boundary, which in turn is a

characteristic of both the data distribution and the learning process.

• We propose different methods to measure this form of bias. Measuring the exact distance

of a point from the decision boundary is a challenging task for deep neural networks which

have a highly non-convex decision boundary. This makes the measurement of robustness

bias a non-trivial task. In this chapter we leverage the literature on adversarial machine

learning and show that we can efficiently approximate robustness bias by using adversarial

attacks and randomized smoothing to get estimates of a point’s distance from the decision

boundary.

• We do an in-depth analysis of robustness bias on popularly used datasets and models.

Through extensive empirical evaluation we show that unfairness can exist due to different

partitions of a dataset being at different levels of robustness for many state-of-the art models

that are trained on common classification datasets. We argue that this form of unfairness

can happen due to both the data distribution and the learning process and is an important

criterion to consider when auditing models for fairness.

2.1.1 Related Work

Fairness in ML. Models that learn from historic data have been shown to exhibit unfairness, i.e.,

they disproportionately benefit or harm certain subgroups (often a sub-population that shares a

common sensitive attribute such as race, gender etc.) of the population (Barocas and Selbst, 2016;
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Chouldechova, 2017; Khandani et al., 2010). This has resulted in a lot of work on quantifying,

measuring and to some extent also mitigating unfairness (Dwork et al., 2012; Dwork and Ilvento,

2018; Zemel et al., 2013; Zafar et al., 2019, 2017c; Hardt et al., 2016; Grgić-Hlac̆a et al., 2018;

Adel et al., 2019; Wadsworth et al., 2018; Saha et al., 2020; Donini et al., 2018; Calmon et al.,

2017; Kusner et al., 2017; Kilbertus et al., 2017; Pleiss et al., 2017; Wang et al., 2020b). Most

of these works consider notions of fairness that are one-shot—that is, they do not consider

how these systems would behave over time as the world (i.e., the model and data distribution)

evolves. Recently more works have taken into account the dynamic nature of these decision-

making systems and consider fairness definitions and learning algorithms that fare well across

multiple time steps (Heidari et al., 2019; Heidari and Krause, 2018; Hashimoto et al., 2018;

Liu et al., 2018b). We take inspiration from both the one-shot and dynamic notions, but take

a slightly different approach by requiring all subgroups of the population to be equally robust

to minute changes in their features. These changes could either be random (e.g.natural noise

in measurements) or carefully crafted adversarial noise. This is closely related to Heidari et al.

(2019)’s effort-based notion of fairness; however, their notion has a very specific use case of

societal scale models whereas our approach is more general and applicable to all kinds of models.

Our work is also closely related to and inspired by Zafar et al.’s use of a regularized loss function

which captures fairness notions and reduces disparity in outcomes (Zafar et al., 2019). There are

major differences in both the approach and application between our work and that of Zafar et al’s.

Their disparate impact formulation aims to equalize the average distance of points to the decision

boundary, E[d(x)]; our approach, instead, aims to equalize the number of points that are “safe”,

i.e., E[1{d(x) > τ}] (see section 2.3 for a detailed description). Our proposed metric is preferable

for applications of adversarial attack or noisy data, the focus of our paper; whereas the metric of
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Zafar et al is more applicable for an analysis of the consequence of a decision in a classification

setting.

Robustness. Deep Neural Networks (DNNs) have been shown to be susceptible to carefully

crafted adversarial perturbations which—imperceptible to a human—result in a misclassification

by the model (Szegedy et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016). In the context

of our paper, we use adversarial attacks to approximate the distance of a data point to the decision

boundary. For this we use state-of-the-art white-box attacks proposed by Moosavi-Dezfooli et al.

(2016) and Carlini and Wagner (2017). Due to the many works on adversarial attacks, there have

been many recent works on provable robustness to such attacks. The high-level goal of these works

is to estimate a (tight) lower bound on the distance of a point from the decision boundary (Cohen

et al., 2019; Salman et al., 2019; Singla and Feizi, 2020). We leverage these methods to estimate

distances from the decision boundary which helps assess robustness bias (defined formally in

Section 2.3).

Fairness and Robustness. Recent works have proposed poisoning attacks on fairness (Solans

et al., 2020; Mehrabi et al., 2020). Khani and Liang (2019) analyze why noise in features can

cause disparity in error rates when learning a regression. We believe that our work is the very first

to show that different subgroups of the population can have different levels of robustness which

can lead to unfairness. We hope that this will lead to more work at the intersection of these two

important sub fields of ML.
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2.2 Heterogeneous Robustness

In a classification setting, a learner is given data D = {(xi, yi)}Ni=1 consisting of inputs

xi ∈ Rd and outputs yi ∈ C which are labels in some set of classes C = {c1, . . . , ck}. These

classes form a partition on the dataset such that D =
⊔

c∈C{(xi, yi) | yi = cj}. The goal of

learning in decision boundary-based optimization is to draw delineations between points in feature

space which sort the data into groups according to their class label. The learning generally tries to

maximize the classification accuracy of the decision boundary choice. A learner chooses some loss

function L to minimize on a training dataset, parameterized by parameters θ, while maximizing

the classification accuracy on a test dataset.

Of course there are other aspects to classification problems that have recently become more

salient in the machine learning community. Considerations about the fairness of classification

decisions, for example, are one such way in which additional constraints are brought into a

Figure 2.1: A toy example showing robustness bias. A.) the classifier (solid line) has 100%
accuracy for blue and green points. However for a budget τ (dotted lines), 70% of points belonging
to the “round” subclass (showed by dark blue and dark green) will get attacked while only 30%
of points in the “cross” subclass will be attacked. This shows a clear bias against the “round”
subclass which is less robust in this case. B.) shows a different classifier for the same data points
also with 100% accuracy. However, in this case, with the same budget τ , 30% of both “round” and
“cross” subclass will be attacked, thus being less biased.
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(a) Three-class classification problem for randomly
generated data.

(b) Proportion samples which are greater than τ away
from a decision boundary.

Figure 2.2: An example of multinomial logistic regression.

learner’s optimization strategy. In these settings, the data D = {(xi, yi, si)}Ni=1 is imbued with

some metadata which have a sensitive attribute S = {s1, . . . , st} associated with each point.

Like the classes above, these sensitive attributes form a partition on the data such that D =⊔
s∈S{(xi, yi, si) | si = s}. Without loss of generality, we assume a single sensitive attribute.

Generally speaking, learning with fairness in mind considers the output of a classifier based off of

the partition of data by the sensitive attribute, where some objective behavior, like minimizing

disparate impact or treatment (Zafar et al., 2019), is integrated into the loss function or learning

procedure to find the optimal parameters θ.

There is not a one-to-one correspondence between decision boundaries and classifier per-

formance. For any given performance level on a test dataset, there are infinitely many decision

boundaries which produce the same performance, see Figure 2.1. This raises the question: if we

consider all decision boundaries or model parameters which achieve a certain performance, how

do we choose among them? What are the properties of a desirable, high-performing decision

boundary? As the community has discovered, one undesirable characteristic of a decision bound-

ary is its proximity to data which might be susceptible to adversarial attack (Goodfellow et al.,

2015; Szegedy et al., 2014; Papernot et al., 2016). This provides intuition that we should prefer
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boundaries that are as far away as possible from example data (Suykens and Vandewalle, 1999;

Boser et al., 1992).

Let us look at how this plays out in a simple example. In multinomial logistic regression,

the decision boundaries are well understood and can be written in closed form. This makes it easy

for us to compute how close each point is to a decision boundary. Consider for example a dataset

and learned classifier as in Figure 2.2a. For this dataset, we observe that the brown class, as a

whole, is closer to a decision boundary than the yellow or blue classes. We can quantify this by

plotting the proportion of data that are greater than a distance τ away from a decision boundary,

and then varying τ . Let dθ(x) be the minimal distance between a point x and a decision boundary

corresponding to parameters θ. For a given partition P of a dataset, D, such that D =
⊔

P∈P P ,

we define the function:

ÎP (τ) =
|{(x, y) ∈ P | dθ(x) > τ, y = ŷ}|

|P |

If each element of the partition is uniquely defined by an element, say a class label, c, or a sensitive

attribute label, s, we equivalently will write Îc(τ) or Îs(τ) respectively. We plot this over a range

of τ in Figure 2.2b for the toy classification problem in Figure 2.2a. Observe that the function for

the brown class decreases significantly faster than the other two classes, quantifying how much

closer the brown class is to the decision boundary.

From a strictly classification accuracy point of view, the brown class being significantly

closer to the decision boundary is not of concern; all three classes achieve similar classification

accuracy. However, when we move away from this toy problem and into neural networks on

real data, this difference between the classes could become a potential vulnerability to exploit,
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Predicted: 15 - 25
Ground Truth: 15 - 25
Race: Black
Gender: Female

Predicted: 25 - 40
Ground Truth: 25 - 40
Race: White
Gender: Male

Predicted: 60+

Predicted: 25 - 40

0.5 ℓ2 perturbation

0.5 ℓ2 perturbation

Figure 2.3: An example of robustness bias in the UTKFace dataset. A model trained to predict age
group from faces is fooled for an inputs belonging to certain subgroups (black and female in this
example) for a given perturbation, but is robust for inputs belonging to other subgroups (white
and male in this example) for the same magnitude of perturbation. We use the UTKFace dataset
to make a broader point that robustness bias can cause harms. In the specific case of UTKFace
(and similar datasets), the task definition of predicting age from faces itself is flawed, as has been
noted in many previous studies (Cramer et al., 2019; Crawford and Paglen, 2019; Buolamwini and
Gebru, 2018).

particularly when we consider adversarial examples.

2.3 Robustness Bias

Our goal is to understand how susceptible different classes are to perturbations (e.g., natural

noise, adversarial perturbations). Ideally, no one class would be more susceptible than any other,

but this may not be possible. We have observed that for the same dataset, there may be some

classifiers which have differences between the distance of that partition to a decision boundary;

and some which do not. There may also be one partition P which exhibits this discrepancy, and

another partition P ′ which does not. Therefore, we make the following statement about robustness

bias:

Definition 1. A dataset D with a partition P and a classifier parameterized by θ exhibits robustness
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bias if there exists an element P ∈ P for which the elements of P are either significantly closer to

(or significantly farther from) a decision boundary than elements not in P .

A partition P may be based on sensitive attributes such as race, gender, or ethnicity—or

other class labels. For example, given a classifier and dataset with sensitive attribute “race”, we

might say that classifier exhibits robustness bias if, partitioning on that sensitive attribute, for some

value of “race” the average distance of members of that particular racial value are substantially

closer to the decision boundary than other members.

We might say that a dataset, partition, and classifier do not exhibit robustness bias if for all

P, P ′ ∈ P and all τ > 0

P(x,y)∈D{dθ(x) > τ | x ∈ P, y = ŷ} ≈

P(x,y)∈D{dθ(x) > τ | x ∈ P ′, y = ŷ}.
(2.1)

Intuitively, this definition requires that for a given perturbation budget τ and a given partition

P , one should not have any incentive to perturb data points from P over points that do not belong

to P . Even when examining this criteria, we can see that this might be particularly hard to satisfy.

Thus, we want to quantify the disparate susceptibility of each element of a partition to adversarial

attack, i.e., how much farther or closer it is to a decision boundary when compared to all other

points. We can do this with the following function for a dataset D with partition element P ∈ P

and classifier parameterized by θ:

RB(P, τ) = |Px∈D{dθ(x) > τ | x ∈ P, y = ŷ}−

Px∈D{dθ(x) > τ | x /∈ P, y = ŷ} |
(2.2)

Observe that RB(P, τ) is a large value if and only if the elements of P are much more (or
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Figure 2.4: For each dataset, we plot Îc(τ) for each class c in each dataset. Each blue line
represents one class. The red line represents the mean of the blue lines, i.e.,

∑
c∈C Îc(τ) for each τ .

Figure 2.5: For each dataset, we plot Îτs for each sensitive attribute s in each dataset.

less) adversarially robust than elements not in P . We can then quantify this for each element

P ∈ P—but a more pernicious variable to handle is τ . We propose to look at the area under the

curve ÎP for all τ :

σ(P ) =
AUC(ÎP )− AUC(

∑
P ′ ̸=P ÎP ′)

AUC(
∑

P ′ ̸=P ÎP ′)
(2.3)

Note that these notions take into account the distances of data points from the decision

boundary and hence are orthogonal and complementary to other traditional notions of bias or

fairness (e.g., disparate impact/disparate mistreatment (Zafar et al., 2019), etc). This means that

having lower robustness bias does not necessarily come at the cost of fairness as measured by

these notions. Consider the motivating example shown in Figure 2.1: the decision boundary on the

right has lower robustness bias but preserves all other common notions (e.g. (Hardt et al., 2016;

Dwork et al., 2012; Zafar et al., 2017c)) as both classifiers maintain 100% accuracy.
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2.3.1 Real-world Implications: Degradation of Quality of Service

Deep neural networks are the core of many real world applications, for example, facial

recognition, object detection, etc. In such cases, perturbations in the input can occur due to

multiple factors such as noise due to the environment or malicious intent by an adversary. Previous

works have highlighted how harms can be caused due to the degradation in quality of service for

certain sub-populations (Cramer et al., 2019; Holstein et al., 2019). Figure 2.3 shows an example

of inputs from the UTKFace dataset where an ℓ2 perturbation of 0.5 could change the predicted

label for an input with race “black” and gender “female” but an input with race “white” and gender

“male” was robust to the same magnitude of perturbation. In such a case, the system worked better

for a certain sub-group (white, male) thus resulting in unfairness. It is important to note that we use

datasets such as Adience and UTKFace (described in detail in section 2.5) only to demonstrate the

importance of having unbiased robustness. As noted in previous works, the very task of predicting

age from a person’s face is a flawed task definition with many ethical concerns (Cramer et al.,

2019; Buolamwini and Gebru, 2018; Crawford and Paglen, 2019).

2.4 Measuring Robustness Bias

Robustness bias as defined in the previous section requires a way to measure the distance

between a point and the (closest) decision boundary. For deep neural networks in use today,

a direct computation of dθ(x) is not feasible due to their highly complicated and non-convex

decision boundary. However, we show that we can leverage existing techniques from the literature

on adversarial attacks to efficiently approximate dθ(x). We describe these in more detail in this

section.
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2.4.1 Adversarial Attacks (Upper Bound)

For a given input and model, one can compute an upper bound on dθ(x) by performing an

optimization which alters the input image slightly so as to place the altered image into a different

category than the original. Assume for a given data point x, we are able to compute an adversarial

image x̃, then the distance between these two images provides an upper bound on distance to a

decision boundary, i.e, ∥x− x̃∥ ≥ dθ(x).

We evaluate two adversarial attacks: DeepFool (Moosavi-Dezfooli et al., 2016) and Carlini-

Wagner’s L2 attack (Carlini and Wagner, 2017). We extend ÎP for DeepFool and CarliniWagner

as

ÎDF
P =

|{(x, y) ∈ P |τ < ∥x− x̃∥, y = ŷ}|
|P |

(2.4)

and

ÎCW
P =

|{(x, y) ∈ P |τ < ∥x− x̃∥, y = ŷ}|
|P |

(2.5)

respectively. We use similar notation to define σDF (P ), and σCW (P ) (σ as defined in Eq 2.3).

While these methods are guaranteed to yield upper bounds on dθ(x), they need not yield similar

behavior to ÎP or σ(P ). We perform an evaluation of this in Section 2.7.1.

2.4.2 Randomized Smoothing (Lower Bound)

Alternatively one can compute a lower bound on dθ(x) using techniques from recent works

on training provably robust classifiers (Salman et al., 2019; Cohen et al., 2019). For each input,

these methods calculate a radius in which the prediction of x will not change (i.e. the robustness

certificate). In particular, we use the randomized smoothing method (Cohen et al., 2019; Salman
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et al., 2019) since it is scalable to large and deep neural networks and leads to the state-of-the-art

in provable defenses. Randomized smoothing transforms the base classifier f to a new smooth

classifier g by averaging the output of f over noisy versions of x. This new classifier g is more

robust to perturbations while also having accuracy on par to the original classifier. It is also

possible to calculate the radius δx (in the ℓ2 distance) in which, with high probability, a given

input’s prediction remains the same for the smoothed classifier (i.e. dθ(x) ≥ δx). A given input x

is then said to be provably robust, with high probability, for a δx ℓ2-perturbation where δx is the

robustness certificate of x.

For each point we use its δx, calculated using the method proposed by Salman et al. (2019),

as a proxy for dθ(x). The magnitude of δx for an input is a measure of how robust an input

is. Inputs with higher δx are more robust than inputs with smaller δx. Again, we extend ÎP for

Randomized Smoothing as

ÎRS
P =

|{(x, y) ∈ P |τ < δx, y = ŷ}|
|P |

(2.6)

We use similar notation to define σRS(P ) (see Eq 2.3).

2.5 Empirical Evidence of Robustness Bias in the Wild

We hypothesize that there exist datasets and model architectures which exhibit robustness

bias. To investigate this claim, we examine several image-based classification datasets and common

model architectures.
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2.5.0.1 Datasets and Model Architectures:

We perform these tests of the datasets CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky,

2009) (using both 100 classes and 20 super classes), Adience (Eidinger et al., 2014), and UTK-

Face (Zhang et al., 2017). The first two are widely accepted benchmarks in image classification,

while the latter two provide significant metadata about each image, permitting various partitions

of the data by final classes and sensitive attributes.

CIFAR-10, CIFAR-100, CIFAR100Super. These are standard deep learning benchmark datasets.

Both CIFAR-10 and CIFAR-100 contain 60, 000 images in total which are split into 50, 000 train

and 10, 000 test images. The task is to classify a given image. Images are mean normalized with

mean and std of (0.5, 0.5, 0.5).

UTKFace. Contains images of a people labeled with race, gender and age. We split the dataset

into a random 80 : 20 train:test split to get 4, 742 test and 18, 966 train samples. We bin the age

into 5 age groups and convert this into a 5-class classification problem. Images are normalized

with mean and std of 0 and 1 respectively.

Adience. Contains images of a people labeled with gender and age group. Task is to classify

a given image into one of 8 age groups. We split the dataset into a random 80:20 train:test

split to get 14, 007 train and 3, 445 test samples. Images are normalized with mean and std of

(0.485, 0.456, 0.406) and (0.229, 0.224, 0.225) respectively.

Our experiments were performed using PyTorch’s torchvision module (Paszke et al., 2019).

We first explore a simple Multinomial Logistic Regression model which could be fully analyzed

with direct computation of the distance to the nearest decision boundary. For convolutional
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neural networks, we focus on Alexnet (Krizhevsky, 2014), VGG19 (Simonyan and Zisserman,

2015), ResNet50 (He et al., 2016a), DenseNet121 (Huang et al., 2017), and Squeezenet1_0

(Iandola et al., 2016) which are all available through torchvision. We use these models since these

are widely used for a variety of tasks. We achieve performance that is comparable to state of

the art performance on these datasets for these models. Additionally we also train some other

popularly used dataset specific architectures like a deep convolutional neural network (we call

this Deep CNN)1 and PyramidNet (α = 64, depth=110, no bottleneck) (Han et al., 2017) for

CIFAR-10. We re-implemented Deep CNN in pytorch and used the publicly available repo to

train PyramidNet2. We use another deep convolutional neural network (which we refer to as Deep

CNN CIFAR1003 and PyramidNet (α = 48, depth=164, with bottleneck) for CIFAR-100 and

CIFAR-100Super. For Adience and UTKFace we additionally take simple deep convolutional

neural networks with multiple convolutional layers each of which is followed by a ReLu activation,

dropout and maxpooling. As opposed to architectures from torchvision (which are pre-trained on

ImageNet) these architectures are trained from scratch on the respective datasets. We refer to them

as UTK Classifier and Adience Classifier respectively. These simple models serve two purposes:

they form reasonable baselines for comparison with pre-trained ImageNet models finetuned on the

respective datasets, and they allow us to analyze robustness bias when models are trained from

scratch.

Accuracy of models trained on the datasets can be found in Table 2.1.

In Sections 2.7 and 2.8 we audit these datasets and the listed models for robustness bias.

In section 2.6, we train logistic regression on all the mentioned datasets and evaluate robustness

1http://torch.ch/blog/2015/07/30/cifar.html
2https://github.com/dyhan0920/PyramidNet-PyTorch
3https://github.com/aaron-xichen/pytorch-playground/blob/master/cifar/model.py
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Table 2.1: Test data performance of all models on different datasets.

Deep
CNN
(CIFAR100)

PyramidNet
Adience
Classifier

UTK
Classifier

Resnet50 Alexnet VGG Densenet
Squeeze-
net

Adience - - 48.80 - 49.75 46.04 51.41 50.80 49.49

UTKFace - - - 66.25 69.82 68.09 69.89 69.15 70.73

CIFAR10 86.97 86.92 - - 83.26 92.08 89.53 85.17 76.97

CIFAR100 59.60 56.42 - - 55.81 71.31 64.39 61.05 40.36

CIFAR100super 71.78 67.55 - - 67.27 80.7 76.06 71.22 55.16

bias using an exact computation. We then show in section 2.7 and 2.8 that robustness bias can be

efficiently approximated using the techniques mentioned in 2.4.1 and 2.4.2 respectively for much

more complicated models, which are often used in the real world. We also provide a thorough

analysis of the types of robustness biases exhibited by some of the popularly used models on these

datasets.

2.6 Exact Computation in a Simple Model: Multinomial Logistic Regression

We begin our analysis by studying the behavior of multinomial logistic regression. Admit-

tedly, this is a simple model compared to modern deep-learning-based approaches; however, it

enables is to explicitly compute the exact distance to a decision boundary, dθ(x). We fit a regres-

sion to each of our vision datasets to their native classes and plot Îc(τ) for each dataset. Figure 2.2

shows the distributions of Îc(τ), from which we observe three main phenomena: (1) the general

shape of the curves are similar for each dataset, (2) there are classes which are significant outliers

from the other classes, and (3) the range of support of the τ for each dataset varies significantly.

We discuss each of these individually.

First, we note that the shape of the curves for each dataset is qualitatively similar. Since the

form of the decision boundaries in multinomial logistic regression are linear delineations in the
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input space, it is fair to assume that this similarity in shape in Figure 2.4 can be attributed to the

nature of the classifier.

Second, there are classes c which indicate disparate treatment under Îc(τ). The treatment

disparities are most notable in UTKFace, the superclass version CIFAR-100, and regular CIFAR-

100. This suggests that, when considering the dataset as a whole, these outlier classes are less

suceptible to adversarial attack than other classes. Further, in UTKFace, there are some classes

that are considerably more susceptible to adversarial attack because a larger proportion of that

class is closer to the decision boundaries.

We also observe that the median distance to decision boundary can vary based on the

dataset. The median distance to a decision boundary for each dataset is: 0.40 for CIFAR-10; 0.10

for CIFAR-100; 0.06 for the superclass version of CIFAR-100; 0.38 for Adience; and 0.12 for

UTKFace. This is no surprise as dθ(x) depends both on the location of the data points (which are

fixed and immovable in a learning environment) and the choice of architectures/parameters.

Finally, we consider another partition of the datasets. Above, we consider the partition

of the dataset which occurs by the class labels. With the Adience and UTKFace datasets, we

have an additional partition by sensitive attributes. Adience admits partitions based off of gender;

UTKFace admits partition by gender and ethnicity. We note that Adience and UTKFace use

categorical labels for these multidimensional and socially complex concepts. We know this to

be reductive and serves to minimize the contextualization within which race and gender derive

their meaning (Hanna et al., 2020; Buolamwini and Gebru, 2018). Further, we acknowledge the

systems and notions that were used to reify such data partitions and the subsequent implications

and conclusions draw therefrom. We use these socially and systemically-laden partitions to

demonstrate that the functions we define, ÎP and σ depend upon how the data are divided for
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analysis. To that end, the function ÎP is visualized in Figure 2.5. We observe that the Adience

dataset, which exhibited some adversarial robustness bias in the partition on C only exhibits minor

adversarial robustness bias in the partition on S for the attribute ‘Female’. On the other hand,

UTKFace which had signifiant adversarial robustness bias does exhibit the phenomenon for the

sensitive attribute ‘Black’ but not for the sensitive attribute ‘Female’.

This emphasizes that adversarial robustness bias is dependant upon the dataset and the

partition. We will demonstrate later that it is also dependant on the choice of classifier. First, we

talk about ways to approximate dθ(x) for more complicated models.

2.7 Evaluation of Robustness Bias using Adversarial Attacks

As described in Section 2.4.1, we argued that adversarial attacks can be used to obtain upper

bounds on dθ(x) which can then be used to measure robustness bias. In this section we audit some

popularly used models on datasets mentioned in Section 2.5 for robustness bias as measured using

the approximation given by adversarial attacks.

2.7.1 Evaluation of ÎDF
P and ÎCW

P

To compare the estimate of dθ(x) by DeepFool and CarliniWagner, we first look at the

signedness of σ(P ), σDF (P ), and σCW (P ). For a given partition P , σ(P ) captures the disparity

in robustness between points in P relative to points not in P (see Eq 2.3). Considering all 151

possible partitions (based on class labels and sensitive attributes, where available) for all five

datasets, both CarliniWagner and DeepFool agree with the signedness of the direct computation

125 times, i.e., 1P

[
sign(σ(P )) = sign(σDF (P ))

]
= 125 = 1P

[
sign(σ(P )) = sign(σCW (P ))

]
.
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Further, the mean difference between σ(P ) and σCW (P ) or σDF (P ), i.e., (σ(P )− σDF (P )), is

0.17 for DeepFool and 0.19 for CarliniWagner with variances of 0.07 and 0.06 respectively.

There is 83% agreement between the direct computation and the DeepFool and CarliniWag-

ner estimates of ÎP . This behavior provides evidence that adversarial attacks provide meaningful

upper bounds on dθ(x) in terms of the behavior of identifying instances of robustness bias.

2.7.2 Audit of Commonly Used Models

We now evaluate five commonly-used convolutional neural networks (CNNs): Alexnet,

VGG, ResNet, DenseNet, and Squeezenet. We trained these networks using PyTorch with standard

stochastic gradient descent. We achieve comparable performance to documented state of the

art for these models on these datasets. After training each model on each dataset, we generated

adversarial examples using both methods and computed σ(P ) for each possible partition of the

dataset. An example of the results for the UTKFace dataset can be see in Figure 2.7.

With evidence from Section 2.7.1 that DeepFool and CarliniWagner can approximate

the robustness bias behavior of direct computations of dθ, we first ask if there are any major

differences between the two methods. If DeepFool exhibits adversarial robustness bias for

a dataset and a model and a class, does CarliniWagner exhibit the same? and vice versa?

Since there are 5 different convolutional models, we have 151 · 5 = 755 different compar-

isons to make. Again, we first look at the signedness of σDF (P ) and σCW (P ) and we see

that 1P

[
sign(σDF (P )) = sign(σCW (P ))

]
= 708. This means there is 94% agreement between

DeepFool and CarliniWagner about the direction of the adversarial robustness bias.

To investigate if this behavior is exhibited earlier in the training cycle than at the final, fully-
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trained model, we compute σCW (P ) and σDF (P ) for the various models and datasets for trained

models after 1 epoch and the middle epoch. For the first epoch, 637 of the 755 partitions were

internally consistent, i.e., the signedness of σ was the same in the first and last epoch, and 621 were

internally consistent. We see that at the middle epoch, 671 of the 755 partitions were internally

consistent for DeepFool and 665 were internally consistent for CarliniWagner. Unsurprisingly,

this implies that as the training progresses, so does the behavior of the adversarial robustness bias.

However, it is surprising that much more than 80% of the final behavior is determined after the

first epoch, and there is a slight increase in agreement by the middle epoch.

We note that, of course, adversarial robustness bias is not necessarily an intrinsic value of

a dataset; it may be exhibited by some models and not by others. However, in our studies, we

see that the UTKFace dataset partition on Race/Ethnicity does appear to be significantly prone to

adversarial attacks given its comparatively low σDF (P ) and σCW (P ) values across all models.

2.8 Evaluation of Robustness Bias using Randomized Smoothing

In Section 2.4.2, we argued that randomized smoothing can be used to obtain lower bounds

on dθ(x) which can then be used to measure robustness bias. In this section we audit popular

models on a variety of datasets (described in detail in Section 2.5) for robustness bias, as measured

using the approximation given by randomzied smoothing.

2.8.1 Evaluation of ÎRS
P

To assess whether the estimate of dθ(x) by randomized smoothing is an appropriate measure

of robustness bias, we compare the signedness of σ(P ) and σRS(P ). When σ(P ) has positive
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sign, higher magnitude indicates a higher robustness of members of partition P as compared

to members not included in that partition P ; similarly, when σ(P ) is negatively signed, higher

magnitude corresponds to lesser robustness for those members of partition P (see Eq 2.3). We

may interpret shared signedness of both σ(P ) (where dθ(x) is deterministic) and σRS(P ) (where

dθ(x) is measured by randomized smoothing as described in Section 2.4.2) as positive support for

the ÎRS
P measure.

Similar to Section 2.7.1, we consider all possible 151 partitions across CIFAR-10, CIFAR-

100, CIFAR-100Super, UTKFace and Adience. For each of these partitions, we compare σRS(P ) to

the corresponding σ(P ). We find that their sign agrees 101 times, i.e., 1P

[
sign(σ(P )) = sign(σRS(P ))

]
=

101, thus giving a 66.9% agreement. Furthermore, the mean difference between σ(P ) and σRS(P ),

i.e., (σ(P )− σRS(P )) is 0.08 with a variance of 0.19.

This provides evidence that randomized smoothing can also provide a meaningful estimate

on dθ(x) in terms of measuring robustness bias.

2.8.2 Audit of Commonly Used Models

We now evaluate the same models and all the datasets for robustness bias as measured by

randomized smoothing. Our comparison is analogous to the one performed in Section 2.7.2 using

adversarial attacks. Figure 2.8 shows results for all models on the UTKFace dataset. Here we plot

σRS
P for each partition of the dataset (on x-axis) and for each model (y-axis). A darker color in

the heatmap indicates high robustness bias (darker red indicates that the partition is less robust

than others, whereas a darker blue indicates that the partition is more robust). We can see that

some partitions, for example, the partition based on class label “40-60” and the partition based
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on race “black” tend to be less robust in the final trained model, for all models (indicated by

a red color across all models). Similarly there are partitions that are more robust, for example,

the partition based on class “0-15” and race “asian” end up being robust across different models

(indicated by a blue color). Figure 2.6 takes a closer look at the distribution of distances for the

UTKFace dataset when partitioned by race, showing that for different models different races can

be more or less robust. Figures 2.6, 2.7 and 2.8 (we see similar trends for CIFAR-10, CIFAR-100,

CIFAR-100Super and Adience) lead us to the following key conclusions:

Dependence on data distribution. The presence of certain partitions that show similar robustness

trends as discussed above (e.g.see final trained model in Figs 2.8 and 2.7, the partitions by class

“0-15” and race “asian” are more robust, whereas the class “40-60” and race “black” are less

robust across all models) point to some intrinsic property of the data distribution that results in that

partition being more (or less) robust regardless of the type decision boundary. Thus we conclude

that robustness bias may depend in part on the data distribution of various sub-populations.

Dependence on model. There are also certain partitions of the dataset (e.g., based on the classes

“15-25” and “60+” as per Fig 2.8) that show varying levels of robustness across different models.

Moreover, even partitions that have same sign of σRS(P ) across different models have very

different values of σRS(P ). This is also evident from Fig 2.6 which shows that the distributions of

dθ(x) (as approximated by all our proposed methods) for different races can be very different for

different models. Thus, we conclude that robustness bias is also dependent on the learned model.

Role of pre-training. We now explore the role of pre-training on our measures of robustness

bias. Specifically, we pre-train five of the six models (Resnet, Alexnet, VGG, Densenet, and

Squeezenet) on ImageNet and then fine-tune on UTKFace. We also train a UTK classifier from
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scratch on UTKFace. Figures 2.8 and 2.7 shows robustness bias scores after the first epoch and

in the final, fully-trained model. At epoch 1, we mostly see no robustness bias (indicated by

close-to-zero values of σRS(P )) for UTK Classifier. This is because the model has barely trained

by that first epoch and predictions are roughly equivalent to random guesses. In contrast, the

other five models already have pre-trained ImageNet weights, and hence we see certain robustness

biases that already exist in the model, even after the first epoch of training. Thus, we conclude

that pre-trained models bring in biases due to the distributions of the data on which they were

pre-trained and the resulting learned decision boundary after pre-training. We additionally see that

these biases can persist even after fine-tuning.

2.8.3 Comparison of Randomized Smoothing and Upper Bounds

We have now presented two ways of measuring robustness bias: via upper bounds and via

randomized smoothing. Figures 2.10, 2.12, 2.14, and 2.16 show the measures of robustness bias as

approximated by CarliniWagner (σCW
P ) and DeepFool (σDF

P ) across different partitions of all the

datasets. While there are important distinctions between the two methods, it is worth comparing

them. To do this, we compare the sign of the randomized smoothing method and the upper bounds

as

1P

[
sign(σRS(P )) = sign(σDF (P ))

]
and

1P

[
sign(σRS(P )) = sign(σCW (P ))

]
.

We see that there is some evidence that the two methods agree. The Adience, UTKFace, and

CIFAR-10 dataset have strong agreement (at or above 75%) between the randomized smoothing
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for both types of upper bounds (DeepFool and CariliniWagner), while the CIFAR-100 dataset has

a much weaker agreement (above but closer to 50%) and CIFAR-100Super has an approximately

66% agreement.

It is important to point out that it is not entirely appropriate to perform a comparison in this

way. Recall that the upper bounds provide estimates of dθ using a trained model. However, the

randomized smoothing method estimates dθ not directly with the trained model — instead it first

modifies (smooths) the model of interest and then performs an estimation. Since the upper bounds

and randomized smoothing methods are so different in practice, there may be no truly appropriate

way to compare the results therefrom. Therefore, too much credence should not be placed on the

comparison of these two methods. Both methods indicate the existence of the robustness bias

phenomenon and can be useful in distinct settings.

2.9 Reducing Robustness Bias through Regularization

Motivated by evidence (see Section 2.5) that robustness bias exists in a diverse set of

real-world models and datasets, we will now show that the expression of robustness bias can be

included in an optimization. We do so in a natural way: by formulating a regularization term that

captures robustness bias.

Recall the traditional Empirical Risk Minimization objective, ERM := lcls(fθ(X), Y ) where

lcls is cross entropy loss. Now we wish to model our measure of fairness (see Section 2.3) and

minimize for it alongside ERM. We first write the empiric estimate of RB(P, τ) as R̃B(P, τ).

Recall the traditional Empirical Risk Minimization objective, ERM := lcls(fθ(X), Y ),

where lcls is cross entropy loss. Now we wish to model our measure of fairness (§2.3) and
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minimize for it alongside ERM. To model our measure, we first evaluate the following cumulative

distribution functions:

Px∈D{dθ(x) > τ | x ∈ P, y = ŷ} =

1∑
x/∈P

1{y = ŷ}

∑
x/∈P
y=ŷ

1{dθ(x) > τ}

Px∈D{dθ(x) > τ | x /∈ P, y = ŷ} =

1∑
x∈P

1{y = ŷ}

∑
x∈P
y=ŷ

1{dθ(x) > τ}

This gives us the empirical estimate of the robustness bias term RB(P, τ), parameterized by

partition P and threshold τ , defined as Equation 2.7 below.

R̃B(P, τ) =
∣∣∣ 1∑
x/∈P

1{y = ŷ}

∑
x/∈P
y=ŷ

1{dθ(x) > τ}−

1∑
x∈P

1{y = ŷ}

∑
x∈P
y=ŷ

1{dθ(x) > τ}
∣∣∣ (2.7)

Now, for R̃B as defined in Equation 2.7 to be computed and used, for example, during

training, we must approximate a closed form expression of dθ. To formulate this, we take

inspiration from the way adversarial inputs are created using DeepFool (Moosavi-Dezfooli et al.,

2016). Just like in DeepFool, we also approximate distance from fθ considering fθ to be linear

(even though it may be a highly non-linear Deep Neural Network). Thus, we get,

dθ(x) =

∣∣∣∣ fθ(x)

||∇xfθ(x)||

∣∣∣∣ . (2.8)

By combining Equations 2.7 and 2.8, we recover R̃B , a computable estimate of the robust-
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ness bias term RB , as follows.

R̃B(P, τ) =
∣∣∣ 1∑
x/∈P

1{y = ŷ}

∑
x/∈P
y=ŷ

1{| fθ(x)

||∇xfθ(x)||
| > τ}−

1∑
x∈P

1{y = ŷ}

∑
x∈P
y=ŷ

1{| fθ(x)

||∇xfθ(x)||
| > τ}

∣∣∣ (2.9)

Finally, given scalar α, we minimize for the new objective function, AdvERM, as follows:

AdvERM := lcls(fθ(X), Y ) + α · R̃B(P, τ).

2.9.1 Experimental Results using Regularized Models

Using our regularized objective, ADVERM, we re-train the model considering α and τ as

hyperparameters, in addition to the traditional hyperparameters such as learning rate, momentum

etc. Here, we evaluate the regularized model, after training for a number of values of α and τ , for

CIFAR10 considering each class as the partition P , and UTKFace with the sensitive attribute race

as a partition P . Figure 2.9 shows example results for the regularized models for the class “truck”

in CIFAR10 and for the class “black” in UTKFace.

Figures 2.18, 2.19, 2.20, 2.21, 2.22, 2.23 shows how models trained with our proposed

regularization term show lesser robustness bias. Figures 2.18, 2.19, and 2.20 correspond to

CIFAR-10, while Figures 2.21, 2.22, and 2.23 correspond to UTKFace. For example, for Deep

CNN trained on CIFAR-10, for the partition “cat”, we see that the distribution of distances become

less disparate for the regularized model (Figure 2.18h) as compared to the original non-regularized

model (Figure 2.18g). This trend persists across models and datasets. We provide a PyTorch

implementation of the proposed regularization term in our accompanying code.
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Across the two datasets, we see that for an appropriate α and τ , we are able to reduce the

robustness disparity—i.e., difference between blue and red curves—that existed in the original

model. For these two datasets, this does not come at any cost of accuracy. We observe test

set accuracy of 86.97% on CIFAR10 without regularization and 87.82% with regularization.

Similarly for UTKFace we see accuracies of 66.25% and 65.52% for no regularization and with

regularization respectively. We interpret our experiments as an indication that an optimization-

based approach can play a part in a larger robustness bias-mitigation strategy, rather than serving

as panacea.

2.10 Discussion and Conclusion

We propose a unique definition of fairness which requires all partitions of a population to

be equally robust to minute (often adversarial) perturbations, and give experimental evidence

that this phenomenon can exist in some commonly-used models trained on real-world datasets.

Using these observations, we argue that this can result in a potentially unfair circumstance

where, in the presence of an adversary, a certain partition might be more susceptible (i.e., less

secure). Susceptibility is prone to known issues with adversarial robustness such as sensitivity to

hyperparameters (Tramer et al., 2020). Thus, we call for extra caution while deploying deep neural

nets in the real world since this form of unfairness might go unchecked when auditing for notions

that are based on just the model outputs and ground truth labels. We then show that this form of

bias can be mitigated to some extent by using a regularizer that minimizes our proposed measure

of robustness bias. However, we do not claim to “solve” unfairness; rather, we view analytical

approaches to bias detection and optimization-based approaches to bias mitigation as potential
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pieces in a much larger, multidisciplinary approach to addressing these issues in fielded systems.

Indeed, we view our work as largely observational—we observe that, on many commonly-

used models trained on many commonly-used datasets, a particular notion of bias, robustness

bias, exists. We show that some partitions of data are more susceptible to two state-of-the-art

and commonly-used adversarial attacks. This knowledge could be used for attack or to design

defenses, both of which could have potential positive or negative societal impacts depending

on the parties involved and the reasons for attacking and/or defending. We have also defined a

notion of bias as well as a corresponding notion of fairness, and by doing that we admittedly toe

a morally-laden line. Still, while we do use “fairness” as both a higher-level motivation and a

lower-level quantitative tool, we have tried to remain ethically neutral in our presentation and have

eschewed making normative judgements to the best of our ability.
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Figure 2.6: UTKFace partitioned by race. We can see that across models, that different populations
are at different levels of robustness as calculated by different proxies (DeepFool on the left,
CarliniWagner in the middle and Randomized Smoothing on the right). This suggests that
robustness bias is an important criterion to consider when auditing models for fairness.
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Figure 2.7: Depiction of σDF
P and σCW

P for the UTKFace dataset with partitions corresponding to
the (1) class labels C and the, (2) gender, and (3) race/ethnicity. These values are reported for all
five convolutional models both at the beginning of their training (after one epoch) and at the end.
We observe that, largely, the signedness of the functions are consistent between the five models
and also across the training cycle.
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Figure 2.8: Depiction of σRS
P for the UTKFace dataset with partitions corresponding to the (1)

class labels C and the, (2) gender, and (3) race/ethnicity. A more negative value indicates less
robustness bias for the partition. Darker regions indicate high robustness bias. We observe that
the trend is largely consistent amongst models and also similar to the trend observed when using
adversarial attacks to measure robustness bias (see Figure 2.7).
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Figure 2.9: In the unregularized model, “truck” in CIFAR10 tends to be more robust than other
classes (2.9a); however, using ADVERM reduces that disparity (2.9b). We see similar behavior
for UTKFace (2.6 & 2.9d).
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Figure 2.10: Depiction of σDF
P and σCW

P for the CIFAR10 dataset with partitions corresponding to
the class labels C. These values are reported for all five convolutional models both at the beginning
of their training (after one epoch) and at the end. We observe that, largely, the signedness of the
functions are consistent between the five models and also across the training cycle.
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Figure 2.11: Depiction of σRS
P for the CIFAR10 dataset with partitions corresponding to the class

labels C.

42



Figure 2.12: Depiction of σDF
P and σCW

P for the CIFAR100 dataset with partitions corresponding to
the class labels C. These values are reported for all five convolutional models both at the beginning
of their training (after one epoch) and at the end. We observe that, largely, the signedness of the
functions are consistent between the five models and also across the training cycle.
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Figure 2.13: Depiction of σRS
P for the CIFAR100 dataset with partitions corresponding to the class

labels C.
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Figure 2.14: Depiction of σDF
P and σCW

P for the CIFAR100super dataset with partitions corre-
sponding to the class labels C. These values are reported for all five convolutional models both
at the beginning of their training (after one epoch) and at the end. We observe that, largely, the
signedness of the functions are consistent between the five models and also across the training
cycle.
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Figure 2.15: Depiction of σRS
P for the CIFAR100super dataset with partitions corresponding to the

class labels C.
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Figure 2.16: Depiction of σDF
P and σCW

P for the Adience dataset with partitions corresponding to
the (1) class labels C and the and (2) gender. These values are reported for all five convolutional
models both at the beginning of their training (after one epoch) and at the end. We observe that,
largely, the signedness of the functions are consistent between the five models and also across the
training cycle.
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Figure 2.17: Depiction of σRS
P for the Adience dataset with partitions corresponding to the (1)

class labels C and the and (2) gender.
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Figure 2.18: [Regularization] CIFAR10 - Deep CNN
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Figure 2.19: [Regularization] CIFAR10 - Resnet50
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Figure 2.20: [Regularization] CIFAR10 - VGG19
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Figure 2.21: [Regularization] UTKFace partitioned by race - UTK Classifier.
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Figure 2.22: [Regularization] UTKFace partitioned by race - Resnet50.
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Figure 2.23: [Regularization] UTKFace partitioned by race - VGG.
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Only a real one could tame me

Only the radio could play me

Oh, now you wish I was complacent

Boy, you musta mixed up our faces

HEATED

Beyoncé

Chapter 3: Robustness Disparities in Face Detection

This work was done in collaboration with George Z. Wei, Tom Goldstein and John P.

Dickerson, and was presented at NeurIPS, 2022 (Dooley et al., 2022b).

Facial detection and analysis systems have been deployed by large companies and critiqued

by scholars and activists for the past decade. Critiques that focus on system performance analyze

disparity of the system’s output, i.e., how frequently is a face detected for different Fitzpatrick skin

types or perceived genders. However, we focus on the robustness of these system outputs under

noisy natural perturbations. We present the first of its kind detailed benchmark of the robustness

of three such systems: Amazon Rekognition, Microsoft Azure, and Google Cloud Platform. We

use both standard and recently released academic facial datasets to quantitatively analyze trends

in robustness for each. Across all the datasets and systems, we generally find that photos of

individuals who are older, masculine presenting, of darker skin type, or have dim lighting are
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more susceptible to errors than their counterparts in other identities.

3.1 Introduction

Face detection identifies the presence and location of faces in images and video. In this

work, face detection, also called face localization, refers to the task of placing a rectangle around

the location of all faces in an image. Automated face detection is a core component of myriad

systems—including face recognition technologies (FRT), wherein a detected face is matched

against a database of faces, typically for identification or verification purposes. FRT-based systems

are widely deployed (Hartzog, 2020; Derringer, 2019; Weise and Singer, 2020). Automated

face recognition enables capabilities ranging from the relatively morally neutral (e.g., searching

for photos on a personal phone (Google, 2021a)) to morally laden (e.g., widespread citizen

surveillance (Hartzog, 2020), or target identification in warzones (Marson and Forrest, 2021)).

Legal and social norms regarding the usage of FRT are evolving (e.g., Grother et al., 2019). For

example, in June 2021, the first county-wide ban on its use for policing (see, e.g., Garvie, 2016)

went into effect in the US (Gutman, 2021). Some use cases for FRT will be deemed socially

repugnant and thus be either legally or de facto banned from use; yet, it is likely that pervasive use

of facial analysis will remain—albeit with more guardrails than today (Singer, 2018).

One such guardrail that has spurred positive, though insufficient, improvements and widespread

attention is the use of benchmarks. For example, in late 2019, the US National Institute of Stan-

dards and Technology (NIST) adapted its venerable Face Recognition Vendor Test (FRVT) to

explicitly include concerns for demographic effects (Grother et al., 2019), ensuring such concerns

propagate into industry systems. Yet, differential treatment by FRT of groups has been known for
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at least a decade (e.g., Klare et al., 2012; El Khiyari and Wechsler, 2016), and more recent work

spearheaded by Buolamwini and Gebru (2018) uncovers unequal performance at the phenotypic

subgroup level. That latter work brought widespread public, and thus burgeoning regulatory,

attention to bias in FRT (e.g., Lohr, 2018; Kantayya, 2020).

One yet unexplored benchmark examines the bias present in a model’s robustness (e.g.,

to noise, or to different lighting conditions), both in aggregate and with respect to different

dimensions of the population on which it will be used. Many detection and recognition systems are

not built in house, instead adapting an existing academic model or by making use of commercial

cloud-based “ML as a Service” (MLaaS) platforms offered by tech giants such as Amazon,

Microsoft, Google, Megvii, etc. With this in mind, our main contribution is a wide robustness

benchmark of six different face detection models, three commercial-grade face detection systems

(accessed via Amazon’s Rekognition, Microsoft’s Azure, and Google Cloud Platform’s face

detection APIs) and three high-performing academic face detection models (MogFace, TinaFace,

and YOLO5Face). For fifteen types of realistic noise, and five levels of severity per type of

noise (Hendrycks and Dietterich, 2019), we test all models against images in each of four well-

known datasets. Across these more than 5 000 000 noisy images from four commonly used

academic datasets: Adience (Eidinger et al., 2014), Casual Conversations Dataset (Hazirbas et al.,

2021), MIAP (Schumann et al., 2021), and UTKFace (Zhang et al., 2017). Additionally, to allow

further research, we make our raw data available for exploration here.1

By benchmarking both commercial and academic models, we can understand two important

insights: (1) audit the use-case of a company which takes open-source models to build in-house

1This work combines two unpublished papers which we wrote previously: (Dooley et al., 2021b) and (Dooley
et al., 2022c). This submission expands on those papers’ ideas and enhances them with more rigorous analysis.
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facial recognition models, and (2) adjudicate corporation’s claims of caring about demographic

biases in their products by measuring the extent to which their models are less biased than academic

models which have no fairness considerations. As such, we endeavor to answer three research

questions:

(RQ1): How robust are commercial and academic face detection models to natural types of noise?

(RQ2): Do face detection models have demographic disparities in their performance on natural

noise robustness tasks?

(RQ3): Are the robustness disparities exhibited by commercial models more or less than the

robustness disparities exhibited by academic models?

To answer these questions, we are motivated to understand how natural perturbations change the

system output. We statistically analyze the performance of three common commercial facial

detection providers and three state-of-the-art academic face detection models, comparing their

performance and demographic disparities by comparing the output of the system on an unperturbed

image with the output on a perturbed version of that image. This is interesting because it isolates

the impact of the noise on the system, independent of the performance of the system. Thus, it

makes comparing across systems easier. Focusing on output instead of system performance

better isolates the impact of the stimulus of interest – the noise.

We observe that (RQ1) the leading face detection models show varying degrees of robustness

to natural noise, but generally perform poorly on this task. Further, we conclude that (RQ2) these

models do have demographic disparities which are statistically significant, and show a bias against

individuals who are older, present as masculine, are darker skinned, and are dimly lit. Additionally,

we see that (RQ3) these biases align with the commercial models, but that commercial model

generally do not have lower level of disparity than the academic models.

53



Overall, our results suggest that regardless of a commercial company’s commitments to

equal treatment of different demographic groups, there are still pernicious problems with their

products which treat demographic groups differently. We see further evidence that face detection

is less robust to noise on older and masculine presenting individuals, which calls for future efforts

to address this systemic problem. While our work indicates that the commercial providers are no

worse on this important and socially impactful task than academics, we would hope to see that the

commitments made by commercial companies would have them dedicate their vast resources and

access to do better than comparatively under-resourced academics and substantially improve upon

the robustness of their widely-used systems.

3.2 Related Work

We briefly overview additional related work in the two core areas addressed by our bench-

mark: robustness to noise and demographic disparity in facial detection and recognition. That latter

point overlaps heavily with the fairness in machine learning literature; for additional coverage of

that broader ecosystem and discussion around bias in machine learning writ large, we direct the

reader to survey works due to Chouldechova and Roth (2018) and Barocas et al. (2019).

Demographic effects in facial detection and recognition. The existence of differential

performance of facial detection and recognition on groups and subgroups of populations has been

explored in a variety of settings (Klare et al., 2012; O’Toole et al., 2012; Buolamwini and Gebru,

2018; Raji and Buolamwini, 2019; Grother et al., 2019; Jain and Parsheera, 2021). In this work,

we focus on measuring the impact of noise on a classification task, like that of Wilber et al. (2016);

indeed, a core focus of our benchmark is to quantify relative drops in performance conditioned on
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an input datapoint’s membership in a particular group. We view our work as a benchmark, that

is, it focuses on quantifying and measuring, decidedly not providing a new method to “fix” or

otherwise mitigate issues of demographic inequity in a system. Toward that latter point, existing

work on “fixing” unfair systems can be split into three (or, arguably, four (Savani et al., 2020))

focus areas: pre-, in-, and post-processing. Pre-processing work largely focuses on dataset curation

and preprocessing (e.g., Feldman et al., 2015b; Ryu et al., 2018; Quadrianto et al., 2019; Wang and

Deng, 2020). In-processing often constrains the ML training method or optimization algorithm

itself (e.g., Zafar et al., 2017b,a, 2019; Donini et al., 2018; Goel et al., 2018; Padala and Gujar,

2020; Agarwal et al., 2018; Wang and Deng, 2020; Martinez et al., 2020; Diana et al., 2020; Lahoti

et al., 2020), or focuses explicitly on so-called fair representation learning (e.g., Adeli et al., 2021;

Dwork et al., 2012; Zemel et al., 2013; Edwards and Storkey, 2016; Madras et al., 2018; Beutel

et al., 2017; Wang et al., 2019b). Post-processing techniques adjust decisioning at inference time

to align with quantitative fairness definitions (e.g., Hardt et al., 2016; Wang et al., 2020b).

Robustness to noise. Quantifying, and improving, the robustness to noise of face detection

and recognition systems is a decades-old research challenge. Indeed, mature challenges like NIST’s

Facial Recognition Vendor Test (FRVT) have tested for robustness since the early 2000s (Phillips

et al., 2007). We direct the reader to a comprehensive introduction to an earlier robustness challenge

due to NIST (Phillips et al., 2011); that work describes many of the specific challenges faced by

face detection and recognition systems, often grouped into Pose, Illumination, and Expression

(PIE). It is known that commercial systems still suffer from degradation due to noise (e.g., Hosseini

et al., 2017); none of this work also addresses the intersection of noise with bias, as we do.

Recently, adversarial attacks have been proposed that successfully break commercial face

recognition systems (Shan et al., 2020; Cherepanova et al., 2021); we note that our focus is on
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natural noise, as motivated by Hendrycks and Dietterich (2019) with their ImageNet-C benchmark.

Literature at the intersection of adversarial robustness and fairness is nascent and does not address

commercial platforms (e.g., Singh et al., 2020; Nanda et al., 2021). To our knowledge, our

work is the first systematic benchmark for commercial face detection systems that addresses,

comprehensively, noise and its differential impact on (sub)groups of the population.

Academic Face Detection Models. Since 2012, neural-network-based face detectors have

become ubiquitous in both industry and academia due to their comparative advantage in model

capacity over traditional methods. As such, we are only going to focus on the prevailing approaches

in deep face detection. According to Minaee et al. (2021), there are five main categories of face

detectors. Cascade-CNN Based Models generally use convolutional neural networks (CNNs) that

operate at various resolutions to produce detections that are then repeatedly refined (or “cascaded”)

through non-maximum suppression and bounding box regression to ultimately output final face

detections (Li et al., 2015). R-CNN Based Models utilize a region proposal network to predict

face regions and landmarks and then verify that the candidate regions are faces or not with a

Regional CNN (Girshick et al., 2014). Single Shot Detector (SSD) Models discretize the output

space of bounding boxes over different aspect ratios as well as scales then use the confidence

scores to reshape the default boxes to better contain the detected faces by using convolutional

features from different layers, usually the higher level layers (Liu et al., 2016). Feature Pyramid

Network (FPN) Based Models upsample the convolutional features of higher (semantically richer)

layers, aggregates them with those calculated in the initial forward pass to create semantically rich

features at all image scales, then detects faces with each of these features at each layer (Lin et al.,

2017). Transformers Based Models use the Transformer (Vaswani et al., 2017) (or the Vision

Transformer (Dosovitskiy et al., 2021)) as the backbone for face detection. The academic models
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evaluated in this chapter fall into the FPN or SSD based detector categories and were chosen

because they were top performers of the popular WIDER FACE (Xiong et al., 2015; Yang et al.,

2016) benchmark.

Our work is most closely related to that of Jaiswal et al. (2022), who look at adversarial

noise and how that effects “gender detection”, “age prediction”, and “smile detection”. Jaiswal

et al. (2022) explicitly do not examine detection as defined by face localization, which is the

topic of this study. Further, their facial analysis technologies generally are downstream processes

from the facial detection/localization technology in this chapter. Additionally, Majumdar et al.

(2021) provide a similar experimental design as our work though for face verification, and on a

significantly smaller set of image distortions and test images. We refer the reader to Singh et al.

(2022) and Drozdowski et al. (2020) for surveys on bias in facial processing and biometrics.

3.3 Benchmark Design

In this section, we outline the details of our benchmark by describing the data we used, the

protocol or method we employed to answer out research questions, and the evaluation metric.

We also describe how our benchmark can be used by other researchers, the limitations of our

benchmark, and give an important social context for our study in facial analysis technology.

3.3.1 Datasets

This benchmark uses four datasets to evaluate the robustness of three commercial and three

academic face detection models. The datasets are described below.

The Open Images Dataset V6 – Extended; More Inclusive Annotations for People (MIAP)
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Figure 3.1: Our benchmark consists of 5,066,312 images of the 15 types of algorithmically
generated corruptions produced by ImageNet-C. We use data from four datasets (Adience, CCD,
MIAP, and UTKFace) and present examples of corruptions from each dataset here.

dataset (Schumann et al., 2021) was released by Google in May 2021 as a extension of the

popular, permissive-licensed Open Images Dataset specifically designed to improve annotations

of humans. For each image, every human is exhaustively annotated with bounding boxes for

the entirety of their person visible in the image. Each annotation also has perceived gender

(Feminine/Masculine/Unknown) presentation and perceived age (Young, Middle, Old, Unknown)

presentation.

The Casual Conversations Dataset (CCD) (Hazirbas et al., 2021) was released by Facebook

in April 2021 under limited license and includes videos of actors. Each actor consented to

participate in an ML dataset and provided their self-identification of age and gender identity

(coded as Female, Male, and Other), each actor’s skin type was rated on the Fitzpatrick scale

(Fitzpatrick, 1988), and each video was rated for its ambient light quality. For our benchmark, we

extracted one frame from each video.
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The Adience dataset (Eidinger et al., 2014) under a CC license, includes cropped images of

faces from images “in the wild”. Each cropped image contains only one primary, centered face,

and each face is annotated by an external evaluator for age and perceived gender (Female/Male).

The ages are reported as member of 8 age range buckets: 0-2; 3-7; 8-14; 15-24; 25-35; 36-45;

46-59; 60+.

Finally, the UTKFace dataset (Zhang et al., 2017) under a non-commercial license, con-

tains images with one primary subject with annotated for age (continuous), perceived gender

(Female/Male), and ethnicity (White/Black/Asian/Indian/Others) by an algorithm, then checked

by human annotators.

For each of the datasets, we randomly selected a subset of images for our evaluation, with

caps on the number of images from each intersectional identity equal to 1500. This reduces

the effect of highly imbalanced datasets. We include a total of 66 662 clean images with 14 919

images from Adience; 21 444 images from CCD; 8194 images from MIAP; and 22 105 images

form UTKFace.

For each dataset, we selected no more than 1500 images from any intersectional group. The

final tallies of how many images from each group can be found in Tables 3.1, 3.2, 3.3, and 3.4.

3.3.1.1 Benchmark Protocol and Metrics.

Recall, our motivating question is how the noise impacts a model’s output. To do this, each

image was corrupted a total of 75 times, per the ImageNet-C protocol with the main 15 corruptions

each with 5 severity levels. Examples of these corruptions can be seen in Figure 3.1. This resulted

in a total of 5 066 312 images (including the original clean ones) which were each passed through
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Table 3.1: Adience Dataset Counts

Age Gender Count

0-2
Female 684
Male 716

3-7
Female 1232
Male 925

8-14
Female 1353
Male 933

15-24
Female 1047
Male 742

25-35
Female 1500
Male 1500

36-45
Female 1078
Male 1412

46-59
Female 436
Male 466

60+
Female 428
Male 467

each of the six models.

Corruption information We evaluate 15 corruptions from Hendrycks and Dietterich (2019):

Gaussian noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur,

snow, frost, fog, brightness, contrast, elastic transforms, pixelation, and jpeg compressions. Each

corruption is described in the Hendrycks and Dietterich (2019) paper as follows:

The first corruption type is Gaussian noise. This corruption can appear in low-lighting

conditions. Shot noise, also called Poisson noise, is electronic noise caused by the discrete nature

of light itself. Impulse noise is a color analogue of salt-and-pepper noise and can be caused by

bit errors. Defocus blur occurs when an image is out of focus. Frosted Glass Blur appears with

“frosted glass” windows or panels. Motion blur appears when a camera is moving quickly. Zoom

blur occurs when a camera moves toward an object rapidly. Snow is a visually obstructive form

of precipitation. Frost forms when lenses or windows are coated with ice crystals. Fog shrouds
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Table 3.2: CCD Dataset Counts

Lighting Gender Skin Age Count

Bright

Female

Dark
19-45 1500
45-64 1500
65+ 547

Light
19-45 1500
45-64 1500
65+ 653

Male

Dark
19-45 1500
45-64 1500
65+ 384

Light
19-45 1500
45-64 1500
65+ 695

Other

Dark
19-45 368
45-64 168
65+ 12

Light
19-45 244
45-64 49

Dim

Female

Dark
19-45 1500
45-64 670
65+ 100

Light
19-45 642
45-64 314
65+ 131

Male

Dark
19-45 1500
45-64 387
65+ 48

Light
19-45 485
45-64 299
65+ 123

Other
Dark

19-45 57
45-64 26
65+ 3

Light
19-45 27
45-64 12
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Table 3.3: MIAP Dataset Counts

AgePresentation GenderPresentation Count

Young Unknown 1500

Middle
Predominantly Feminine 1500
Predominantly Masculine 1500
Unknown 561

Older
Predominantly Feminine 209
Predominantly Masculine 748
Unknown 24

Unknown
Predominantly Feminine 250
Predominantly Masculine 402
Unknown 1500

objects and is rendered with the diamond-square algorithm. Brightness varies with daylight

intensity. Contrast can be high or low depending on lighting conditions and the photographed

object’s color. Elastic transformations stretch or contract small image regions. Pixelation occurs

when upsampling a lowresolution image. JPEG is a lossy image compression format which

introduces compression artifacts.

The specific parameters for each corruption can be found in the project’s github at the

corruptions file.

Benchmarks Costs Images were processed and stored within AWS’s cloud using S3 and EC2.

The experiments cost was $17 507.55 and a breakdown can be found in Table 3.5.

API Parameters For the AWS DetectFaces API,2 we selected to have all facial attributes returned.

The Azure Face API3 allows the user to select one of three detection models. We chose model

detection_03 as it was their most recently released model (February 2021) and was described

2https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectFaces.html
3https://westus.dev.cognitive.microsoft.com/docs/services/

563879b61984550e40cbbe8d/operations/563879b61984550f30395236
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Table 3.4: UTKFace Dataset Counts

Age Gender Race Count

0-18

Female

Asian 555
Black 161
Indian 350
Others 338
White 987

Male

Asian 586
Black 129
Indian 277
Others 189
White 955

19-45

Female

Asian 1273
Black 1500
Indian 1203
Others 575
White 1500

Male

Asian 730
Black 1499
Indian 1264
Others 477
White 1500

45-64

Female

Asian 39
Black 206
Indian 146
Others 22
White 802

Male

Asian 180
Black 401
Indian 653
Others 97
White 1500

65+

Female

Asian 75
Black 78
Indian 43
Others 10
White 712

Male

Asian 148
Black 166
Indian 91
Others 5
White 682
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Table 3.5: Total Costs of Benchmark

Category Cost

Azure Face Service $4,270.58
AWS Rekognition $4,270.66
Google Cloud Platform $7,230.47
S3 $1,003.83
EC2 $475.77
Tax $256.24

Total $17,507.55

to have the highest performance on small, side, and blurry faces, since it aligns with our benchmark

intention. This model does not return age or gender estimates (though model detection_01

does).

These experiments were conducted in July 2021.

Evaluation Metrics To evaluate the change that image corruptions have to face detection systems,

we measure the precision of the corrupted images while using the detections from the clean image

as ground truth. While this approach obviates the need for real ground truth bounding boxes, it is

also a principled measurement strategy for our main research question. Since we are primarily

interested in how the system is affected by the corruption, this metric is superior to using real

ground truth bounding boxes. This follows because we’re interested in isolating the change in a

system under a corruption which is exactly what this method measures.

To compute precision, we first observe the face detections on each clean image. After

subsequently observing the face detection of a corrupted version of the clean image, we compute

the image-level precision and recall for the corrupted image while using whatever the clean image’s

detections were as ground truth.
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We evaluate the change of the face systems under perturbations using the standard object

detection metric: mean average precision (mAP). We use the standard implementation of the

mAP metric by COCO (Lin et al., 2014). Values reported below are mAP scores averaged over

intersection over union (IoU) thresholds between 0.5 and 0.95 in intervals of 0.05. Below we call

this metric Average Precision because we only have one class so the “mean" in mean average

precision is trivial. Since we are interested in the system change under perturbation, and because

none of the datasets have underlying ground truths, we treat the system output of the clean image

as ground truth. A visual depiction of this process can be found in Figure 3.2.

We also investigate the significance of whether two groups are equally treated by a model

under each metric by performing statistical tests. We observe bias by first performing a Kruskal-

Wallis Rank Sum Test between explanatory and response variables which indicate whether two

or more groups are treated equally or not. In the case where there is enough evidence to show

that groups are treated differently, we then run the Pairwise Wilcoxon Rank Sum Tests to observe

which groups have significantly different treatment and in which direction. All statistical tests are

reported with α = 0.05 with Bonferroni-Holm corrections. Each claim we make across datasets is

done by looking at the trends in each dataset and are inherently qualitative.

We visually represent our results in Figures 3.4-3.7 by examining odds ratios between

two categories of a sociodemographic variable across each model and dataset. For each pair of

subgroups, like Middle-aged and Older subjects in Figure 3.5, we calculate the odds of each

for each subgroup, Oddsmiddle and Oddsolder and then look at their ratio: Oddsmiddle/Oddsolder.

When this value is greater than 1, like in Figure 3.5, it means the odds of higher performance

are larger for middle aged group is higher than the older group. We conclude that there is a bias

against older subjects. When the error bounds do not cross 1, this means that this disparity is
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statistically significant as well.

3.3.1.2 How to Use our Benchmark.

There are three main ways that our benchmark could be used by future researchers

and practitioners. First, the analysis code, data, and results are being released publicly. New

models that are built, either in academia or industry, can be easily benchmarked against our

framework, and progress in this space can be tracked by the research community. Indeed, it

is our intention to communicate our results to standards bodies such as NIST for inclusion in,

or influence on, their long-running FRVT gauntlet. Second, the comparison across types of

models (in our case, academic and commercial) could be adopted by more algorithmic audits.

For example, in many areas (language models for text generation, diffusion models for text to

image tasks, myriad object detection tasks) academic, industry-funded but open-sourced, and

industry-funded and closed-source models compete across various metrics, and comparing and

contrasting appropriately-defined bias metrics across those verticals is of practical importance.

Third, well-founded and quantitative studies may be of use to policymakers. As discussed in
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Section 3.1, facial analysis is a topic of great regulatory and legislative interest at this moment, and

informing all sides—policymakers, the public, and providers of facial analysis technology—will

lead to more clear and educated discussion and norm setting.

3.3.1.3 What is not included in this study.

There are three main things that this benchmark does not address. First, we do not

examine cause and effect. We report inferential statistics without discussion of what generates

them. Second, we only examine the types of algorithmicaly generated natural-like noise present in

the 15 corruptions. We explicitly do not study or measure robustness to other types of changes

to images, for instance adversarial noise, camera dimensions, etc. Finally, we do not investigate

algorithmic training. We do not assume any knowledge of how the commercial system was

developed or what training procedure or data were used.

3.3.1.4 Social Context.

This benchmark relies on socially constructed concepts of gender presentation and skin-

tone/race and the related concept of age. While this benchmark analyzes phenotypal versions of

these from metadata on ML datasets, it would be wrong to interpret our findings absent a social

lens of what these demographic groups mean inside a society. We guide the reader to Benthall and

Haynes (2019) and Hanna et al. (2020) for a look at these concepts for race in machine learning,

and Hamidi et al. (2018) and Keyes (2018) for similar looks at gender.
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3.4 Results

3.4.1 RQ1: Overall Model Performance

To answer RQ1 and to provide a baseline for comparison later in the analysis, we examine

the overall performance of each model on each dataset, presented in Figure 3.3. We see from

the outset that we can answer RQ1 affirmatively: face detection models sometimes struggle

significantly with robustness to noise. Commercial models as a whole outperform the academic

models on every dataset – however there are individual models in each category which break this

conclusion. For example, the academic model MogFace performs significantly better than all

the commerical models on UTKFace, though as a whole the academic models are inferior to the

commercial ones.

Within in each class of model, commercial and academic, there is not a clear top model.

However, we note that on the academic model side, MogFace significantly outperforms the other

two models on every dataset except CCD. It is unknown as to why MogFace has such high

performance, but we hypothesize a reason for what might explain this. MogFace was published

very recently (late 2021), and perhaps much more recently than the commercial models. Only

Azure indicates when its model was released (February 2021). The analysis of the commercial

providers was also done prior to the release of MogFace. While more contemporary models do

not necessarily imply better performance, this could be playing a role.
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3.4.1.1 Performance of Individual Perturbations

Recall that there are four types of ImageNet-C corruptions: noise, blur, weather, and digital.

On Adience, Brightness is the easiest corruption and noise is the hardest on five of the six models –

GCP performs best on Pixelate and worst on Snow. On CCD, all models perform best on Glass

Blur but worst on Zoom Blur.

Again, he zoom blur corruption proves particularly difficult on the MIAP datasets – it

is the worst performer on all models for this dataset, whereas Brightness is the easest on four

of the six models. On UTKFace, elastic-transform is a notable corruption which the models

struggle with – all models except TinaFace and Yolo5Face perform worst on elastic tansform and

UTKFace; all models except GCP perform best on Brightness. TinaFace and Yolo5Face struggle

very significantly with the noise corruptions on UTKFace. Further details and analysis can be

found in Table A.1 and Appendix A.1.2.

3.4.2 RQ2: Demographic Disparities in Noise Robustness

We now turn our attention to answer RQ2: do face detection models have demographic dis-

parities in their performance on noise robustness tasks? Each dataset we analyze has both perceived

gender and perceived age labels and CCD has perceived skin type and lighting conditions.

3.4.2.1 Gender Disparities

We begin by first pausing to note that the labels we have for perceived gender were in all

cases provided by a third-party human reviewer, and the labels fall within the gender binary. The

one exception is the MIAP dataset which reports a category of “Unknown” for times when the
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Figure 3.4: Gender disparity plots for each dataset and model. Values below 1 indicate that
predominantly feminine presenting subjects are more susceptible to noise-induced changes. Values
above 1 indicate that predominantly masculine presenting subjects are are more susceptible to
noise-induced changes. Error bars indicate 95% confidence.

human reviewers were unable to reach a decision on the perceived gender of the subject. While

gender is not binary and gender identity is not something which third party reviewers can infer,

we use the perceived gender concept in our work to measure how model performance may differ

for people who present gender differently.

We visually depict the performance of each model on each dataset in Figure 3.4 broken

down by perceived gender. We analyze the observed perceived gender disparities for each dataset

separately with a report of the odds ratio of feminine presenting individuals over masculine

presenting individuals. Recall, values over 1 indicate higher performance on those whose are

feminine presenting, and values less than 1 indicate higher performance on those who are masculine

presenting.

We observe, qualitatively, across the 24 dataset and model combinations, there is a bias

against masculine presenting individuals in 19 of them, there is a bias against feminine presenting

subjects in 4, and there is no bias in one. This is a rather surprising result as previous reports

indicate biases against feminine presenting individuals in facial recognition technology.
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Figure 3.5: Age disparity plots for each dataset and model. Values greater than 1 indicate that
older subjects are more susceptible to noise-induced changes compared to middle aged subjects.
Error bars indicate 95% confidence.

We further observe that the UTKFace dataset has the lowest robustness bias for perceived

gender across all the models. This indicates that the dataset itself is an important tool in the

measurement of algorithmic disparities and suggests that future work in this domain area should

greatly expand their studies to incorporate multiple datasets.

3.4.2.2 Age Disparities

We move on to a discussion of the age disparities present in these models and datasets. We

report the results of this age disparity in Figure 3.5. We note again, that age labels are given

by perceived age of the subject in the image. Adience provides disparate age categories, MIAP

provides age groupings (Young, Middle, Older, and Unknown) and UTKFace natively provides a

numeric value. Since numeric age values from UTKFace are likely misspecified as it is nearly

impossible to correctly predict a person’s age from a photo, we bin these numeric values into four

buckets of (0-18), (19-45), (45-65) and (65+).

Qualitatively, looking at all these results, we observe that the oldest group always is more
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Figure 3.7: Lighting disparity plots for CCD.
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Error bars indicate 95% confidence.

susceptible to noise-induced changes compared to middle aged individuals. Quantiatively as well,

we see that the oldest group is always statistically significantly the lowest performer of the groups.

We note that while there may be differences in the sample sizes of these groups, the statistical tests

are robust to these differences and account for sample size differences. Statistical test results for

Pairwise Wilcoxon Rank Sum Tests can be found in the Appendix.

For MIAP, we observe significantly higher biases against older individuals than we do for

the other datasets. We hypothesize that this might be due to the way in which the MIAP dataset

was collected and the nature of the more natural images of entire scenes with sometimes multiple

faces in them.

3.4.2.3 Skin Type and Lighting Disparities

The only dataset which includes metadata on skin type and illumination is the CCD dataset.

As was customary at the time of the dataset release, CCD reports annotator provided Fitzpatrick

skin type labels which we split the into two groups: Lighter (for ratings I-III) and Darker for
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ratings (IV-VI).

We observe a statistically significant bias against dark skinned individuals across every

model, as can be seen in Figure 3.6. We further report that the bias between skin types is highest

in the youngest groups; and this bias decreases in older groups. We also see a similar trend in the

intersectional identities available in the CCD metadata (age, perceived gender, and skin type). We

see that in every identity (except for 45-64 year old and Other gendered) the darker skin type has

statistically significant lower AP. This difference is particularly stark in 19-45 year old, masculine

subjects.

Lighting condition is also included as a metadata label in the CCD dataset. In Figure 3.7,

we see that every model, except for YOLO5Face, exhibits behavior such that dimly lit images are

more susceptible to noise-induced changes than brightly lit images. Interestingly and across the

board, we generally see that the disparity in demographic groups decreases between bright and

dimly lit environments. For example, the difference in precision between dark and light skinned

subjects decreases to zero in dimly lit environments. This is also true for age groups. However,

this is not true for individuals with gender presentations as Other or omitted.

3.4.3 RQ3: Disparity Comparison to Between Academic and Commercial Mod-

els

To answer RQ3, we examine the ordering and overlapping of the confidence intervals in

the Figures 3.4-3.7. We note that we do not see signs of systemic differences between academic

and commercial models in terms of their demographic disparities. When we examine the most

biased model in each of the dataset and sociodemographic pairings, we observe no clear pattern.
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Commercial models are most biased in skin type and lighting variables as well as on Adience and

UTKFace in the perceived gender variable. Academic models are most biased on the CCD dataset

in the perceived gender variable as well as every dataset except for CCD on the age variable. (They

are tied in the other two instances). Thus, we conclude there is no systematic difference in the

magnitude of the disparity exhibited by commercial and academic models writ large.

3.5 Implications and Hypotheses

Above, we have shown striking disparities in commercial facial analysis systems. These

biases have potential for real harms felt by individuals. Facial detection is the first step in facial

recognition. As such, the biases which we report here will propagate downstream into further

facial analysis systems. Facial detection bias is the starting point for bias in other facial analyses,

and research that addresses biases in detection will also serve any other facial analysis system

which uses its outputs. However, downstream systems will still have their own biases.

Since we are external researchers, we can only speculate as to why these disparities and

biases are observed since we do not have access to the models themselves. The biases for dark-

skinned individuals and dimly-lit subjects is unfortunately aligned with many prior works on the

subject. Among the reasons for this include luminance and pixel intensity, which unfortunately

have been codified as being discriminatory against darker skinned people in photography for

decades (Lewis, 2019).

On the other hand, the findings about older individuals and masculine-presenting individuals

offer contrasting conclusions from existing work that audits facial analysis technologies. Regarding

the finding the systems are more susceptible to noise-induced changes on masculine presenting
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subjects, we hypothesize that this might have to do with the size that a feminine-presenting

subject’s head takes up in an image. One gender presentation marker is hair and we hypothesize

that the subject’s entire head size might be a confounding factor in this bias phenomenon. We

unfortunately do not have the data to test this hypothesis (since ground truth data for face detection

includes just data on the face), but one could collect such data with sufficient ground truth.

3.6 Discussion & A Call to action

Revisiting our research questions, we come away with rather clear answers. We see that

face detection models:

(RQ1): show that their robustness to noise could be improved significantly;

(RQ2): have significant perceived sociodemographic disparities in their performance on noise

robustness tasks; and

(RQ3): show similar degrees of demographic bias across both academic and commercial models.

We believe that these results beget three main conclusions for different audiences who are

interested in face detection systems and/or algorithmic bias. Our results suggest that commercial

systems generally are no less biased on noise robustness than academic systems, for the types of

noise corruptions we benchmarked. This is a rather striking result considering the resources large

companies have at their disposal to tackle problems like demographic disparities in their products.

Additionally, since demographic disparities in commercial products became a crucible following

the publication of Buolamwini and Gebru (2018) in 2018, these corporations have had ample time

to address and work towards solutions to these issues. While these companies have to varying

degrees acknowledged the need to equal out demographic disparities in their products, we cannot
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fully know what investment they have placed on these issues, and specifically on disparities in

noise robustness. So at this time, we can merely speculate.

If these companies have committed vast resources to address the demographic disparities

in their products, and specifically in noise robustness, then our results lead us to conclude that

these investments have generally not paid off. We conclude this because we now know that within

each dataset and for most commercial model, there is at least one academic model which is at

most as biased than it is. Further, since these academic models are published publicly with full

source code and training procedures, we know that these models have not included any fairness

constraints or considerations. Thus, if these companies have invested heavily in this problem, then

we conclude that their investments have not paid off.

However, it is perhaps overly optimistic to think that corporations have invested in the

mitigation of demographic bias in noise robustness — although we posit that this is not likely

because many real-world use cases for facial analysis occur under imperfect “in-the-wild” condi-

tions that would introduce various forms of natural noise. If in fact they have not done so, our

results give a clear benchmark and goalpost for these corporations to improve. While in most

cases, the commercial models are the most biased system, we should endeavor to expect that if

these corporations plan to continue to publicly sell face detection software — a very socially and

ethically provocative tool — that they should be investing in mitigating these biases and be able to

do better than academic models which have no fairness considerations.

Our results add to the increasing body of research which finds various pernicious forms

of demographic bias in facial recognition technologies. We provided strong evidence of the

demographic biases present in face detection systems. We conclude that despite all the talk and

publicity about concerns of demographic disparities in commercially provide products, large
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technology companies are no better at eliminating bias for noise robustness than academic models.

Thus, we end this work with two broad calls to action:

To industry: This benchmark shows that the highly-resourced companies are no better

than academic models at this robustness disparity in facial detection, a rather surprising comparison

between where a trillion-dollar company could be—by spending a vanishing fraction of their

liquid capital—and where it should be—where “should” is, admittedly, a value judgment, but a

bipartisan one (Beyea and Kebede, 2021), and one gaining increasing traction in those firms’ own

home country (Ruane, 2021).

Our call to action, then, is as follows: pay attention to, work with, and fund academic

research in unfairness in facial detection and noise, specifically natural and synthetic styles of

noise. As our present work shows, academic models run hand-in-hand with—and, indeed, by

some metrics beat—commercially deployed systems, and it would be of great benefit to further

encourage unrestricted growth in that space, and to fertilize that growth with cross-boundary

communication of techniques that have been tried internally at for-profit firms. Specific to our

setting, both the present work and previous works (e.g., Buolamwini and Gebru, 2018; Raji and

Buolamwini, 2019) would benefit immensely from at least partial access to the internal workings of

commercial systems, including dataset curation processes. Beyond simply measuring disparities,

the natural next step is to hypothesize reasons for those disparities and then to, at least partially,

mitigate them via new techniques. Indeed, as this chapter shows, state-of-the-art academic models

are arguably beating commercial models in some ways, so the value within this communication

would flow both ways. Without a clear line of communication between academic and industrial

researchers, this latter process is hampered.

To the public sector: The public sector provides a great service in both impacting the
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evolution of, and creating as well as enforcing the present state of social and legal norms. For

example, in the United States, for our specific setting, the National Institute of Standards and

Technology (NIST) Face Recognition Vendor Test (FRVT) has measured and monitored progress

in both commercial and academic facial analysis systems. It has been run for at least the last two

decades, and has been updated numerous times. Indeed, in a recent FRVT Update, NISTIR 8280

(2019), NIST brought demographic concerns into the forefront. NIST’s venerable FRVT has a

history of incorporating natural noise into its barrage of tests; we would ask NIST, and analogous

non-regulatory and standards-settings bodies in other countries, to consider updating their tests

(e.g., FRVT) to include the cross section of bias and forms of noise. Our work motivates the need

for monitoring in this area.

To the regulatory side, we are encouraged by and seek further acceptance of results publicized

by both academics and industrial researchers. Washington State aims to set an example here with

its recently enacted State Bill 6281, which states “if the results of . . . independent testing identify

material unfair performance differences across subpopulations . . . then the processor must develop

and implement a plan to address the identified performance differences” (of Washington 66th

Legislature 2020 Regular Session, 2020). We believe that this benchmark meets this definition and

hope the public sector has a robust enforcement mechanism for such legislation. We encourage

other researchers to continue to audit existing commercial products, and believe our approach

to compare commercial models to academic models enriches the scholarly and social discourse

about facial recognition technology.
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Chapter 4: Rethinking Bias Mitigation: Fairer Architectures Make for Fairer

Face Recognition

This work was done in collaboration with my co-first author, Rhea Sukthanker, and Colin

White, John P. Dickerson, Frank Hutter, and Micah Goldblum.

Conventional belief in the fairness community is that one should first find the highest

performing model for a given problem and then apply a bias mitigation strategy. One starts with

an existing model architecture and hyperparameters, and then adjusts model weights, learning

procedures, or input data to make the model fairer using a pre-, post-, or in-processing bias

mitigation technique. Motivated by the belief that the inductive bias of a model architecture is more
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important than the bias mitigation strategy, we take a different approach to bias mitigation. We

show that finding an architecture that is more fair offers significant gains compared to conventional

bias mitigation strategies in the domain of face recognition, a task that is notoriously challenging

to de-bias. To this end, we conduct the first neural architecture search for fairness, jointly with a

search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other

competitive architectures in terms of accuracy and fairness on the two most widely used datasets

for face identification: CelebA and VGGFace2. This work challenges the assumption that bias

mitigation pipelines should default to existing popular architectures which were optimized for

accuracy — instead we show that it may be more beneficial to begin with a fairer architecture as

the foundation of such pipelines.

4.1 Introduction

Machine learning is applied to a wide variety of socially-consequential domains, e.g.,

credit scoring, fraud detection, hiring decisions, criminal recidivism, loan repayment, and face

recognition (Mukerjee et al., 2002; Ngai et al., 2011; Learned-Miller et al., 2020; Barocas et al.,

2017), with many of these applications impacting the lives of people more than ever — often

in biased ways (Buolamwini and Gebru, 2018; Joo and Kärkkäinen, 2020; Wang et al., 2020b).

Dozens of formal definitions of fairness have been proposed (Narayanan, 2018), and many

algorithmic techniques have been developed for debiasing according to these definitions (Verma

and Rubin, 2018). Many debiasing algorithms fit into one of three (or arguably four (Savani et al.,

2020)) categories: pre-processing (e.g., Feldman et al., 2015b; Ryu et al., 2018; Quadrianto et al.,

2019; Wang and Deng, 2020), in-processing (e.g., Zafar et al., 2017b, 2019; Donini et al., 2018;
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Figure 4.1: Overview of our methodology.

Goel et al., 2018; Padala and Gujar, 2020; Wang and Deng, 2020; Martinez et al., 2020; Nanda

et al., 2021; Diana et al., 2020; Lahoti et al., 2020), or post-processing (e.g., Hardt et al., 2016;

Wang et al., 2020b).

Conventional wisdom is that in order to effectively mitigate bias, we should start by selecting

a model architecture and set of hyperparameters which are optimal in terms of accuracy and

then apply a mitigation strategy to reduce bias while minimally impacting accuracy. While

existing methods for de-biasing machine learning systems use a fixed neural architecture and

hyperparameter setting, we instead ask a fundamental question which has received little attention:

how much does model-bias arise from the architecture and hyperparameters? We further ask

whether we can we exploit the extensive research in the fields of neural architecture search (NAS)

(Elsken et al., 2019) and hyperparameter optimization (HPO) (Feurer and Hutter, 2019) to search

for more inherently fair models.

We demonstrate our results on face identification systems where pre-, post-, and in-

processing techniques have fallen short of de-biasing face recognition systems, and training

fair models in this setting demands addressing several technical challenges (Cherepanova et al.,

2023). Face identification is a type of face recognition which is regularly deployed across the world
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by government agencies for tasks including surveillance, employment, and housing decisions.

Face recognition systems exhibit disparity in accuracy based on race and gender (Grother et al.,

2019; Raji et al., 2020; Raji and Fried, 2021; Learned-Miller et al., 2020). For example, some

face recognition models are 10 to 100 times more likely to give false positives for Black or Asian

people, compared to white people (Allyn, 2020). This bias has already led to multiple false arrests

and jail time for innocent Black men in the USA (Hill, 2020a).

In this work, we conduct the first large-scale analysis of the relationship between hyper-

parameters, architectures, and bias. We train a diverse set of 29 architectures, ranging from

ResNets (He et al., 2016b) to vision transformers (Dosovitskiy et al., 2021; Liu et al., 2021) to

Gluon Inception V3 (Szegedy et al., 2016) to MobileNetV3 (Howard et al., 2019). We conduct

these experiments, for a total of 88 493 GPU hours, on the two most widely used datasets in face

identification that have sociodemographic labels: CelebA (Liu et al., 2015) and VGGFace2 (Cao

et al., 2018). We train each of these architectures across different combinations of head, optimizer,

and learning rate.

Next, we exploit this observation in order to design architectures with a better fairness-

accuracy tradeoff. We initiate the study of NAS for fairness by conducting the first use of

NAS+HPO to jointly optimize fairness and accuracy. To tackle this problem, we construct a search

space based on the highest-performing architecture from our analysis. We adapt the existing

Sequential Model-based Algorithm Configuration method (SMAC) (Lindauer et al., 2022) for

multi-objective architecture and hyperparameter search. We discover a Pareto frontier of face

recognition models that outperform existing state-of-the-art models on both accuracy and multiple

fairness metrics. An overview of our methodology can be found in 4.1. We release all of our code

and raw results here, so that users can adapt our work to any bias measure of their choice.
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We summarize our primary contributions:

• We provide a new class of bias mitigation strategies. We identify that architectures have

a profound influence on fairness, and then we exploit that insight in order to design fairer

architectures via Neural Architecture Search and Hyperparameter Optimization.

• Our observations show that it is better to search for a fairer architecture than it is to adjust

an unfair one. We conclude that the implicit convention of choosing the highest-accuracy

architectures is a sub-optimal strategy, and we suggest that architectures and hyperparameters

play a significant role in determining the best fairness-accuracy tradeoff.

• Our approach finds architectures which are Pareto-optimal on a variety of fairness metrics on

both CelebA and VGGFace2. Additionally, when comparing to other bias mitigation techniques,

our approach remains Pareto-optimal, finding the fairest model.

4.2 Background and Related Work

4.2.1 Face Identification.

Face recognition tasks fall into two categories: verification and identification. We focus on

face identification which asks whether a given person in a source image appears within a gallery

composed of many target identities and their associated images; this is a one-to-many comparison.

Novel techniques in face recognition tasks, such as ArcFace (Wang et al., 2018), CosFace (Deng

et al., 2019), and MagFace (Meng et al., 2021), use deep networks (often called the backbone)

to extract feature representations of faces and then compare those to match individuals (with

mechanisms called the head). Generally, backbones take the form of image feature extractors

and heads resemble MLPs with specialized loss functions. Often, the term “head” refers to both
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the last layer of the network and the loss function. We focus our analysis on identification, and

we focus our evaluation on examining how close images of similar identities are in the feature

space of trained models, since the technology relies on this feature representation to differentiate

individuals. An overview of recent research on these topics can be found in Wang and Deng

(2018).

4.2.2 Bias Mitigation in Face Recognition.

The existence of differential performance of face recognition on population groups and

subgroups has been explored in a variety of settings. Earlier work (e.g., Klare et al., 2012;

O’Toole et al., 2012) focuses on single-demographic effects (specifically, race and gender) in

pre-deep-learning face detection and recognition. Buolamwini and Gebru (2018) uncover unequal

performance at the phenotypic subgroup level in, specifically, a gender classification task powered

by commercial systems. Raji and Buolamwini (2019) provide a follow-up analysis – exploring

the impact of the public disclosures of Buolamwini and Gebru (2018) – where they find that

named companies (IBM, Microsoft, and Megvii) updated their APIs within a year to address

some concerns that had surfaced. Further research continues to show that commercial face

recognition systems still have sociodemographic disparities in many complex and pernicious ways

(Drozdowski et al., 2020; Dooley et al., 2021b; Jaiswal et al., 2022; Dooley et al., 2022c; Jaiswal

et al., 2022).

Facial recognition is a large and complex space with many different individual technologies,

some with bias mitigation strategies designed just for them (Leslie, 2020; Wu et al., 2020). The

main bias mitigation strategies for facial identification are described in 4.5.
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4.2.3 Neural Architecture Search (NAS) and Hyperparameter Optimization

(HPO).

Deep learning derives its success from the manually designed feature extractors which

automate the feature engineering process. Neural architecture search (NAS) (Elsken et al., 2019),

on the other hand, aims at automating the very design of network architectures for a task at

hand. NAS can be seen as a subset of HPO (Feurer and Hutter, 2019), which refers to the

automated search for optimal hyperparameters, such as learning rate, batch size, dropout, loss

function, optimizer, and architectural choices. Rapid and extensive research on NAS for image

classification and object detection has been witnessed as of late (Liu et al., 2018a; Zela et al., 2019;

Xu et al., 2019; Pham et al., 2018; Cai et al., 2018). Deploying NAS techniques in face recognition

systems has also seen a growing interest (Zhu, 2019; Wang, 2021). For example, reinforcement

learning-based NAS strategies (Xu et al., 2019) and one-shot NAS methods (Wang, 2021) have

been deployed to search for an efficient architecture for face recognition with low error. However,

in a majority of these methods, the training hyperparameters for the architectures are fixed, which

we observe should be reconsidered in order to obtain the fairest possible face recognition systems.

Moreover one-shot NAS methods have also been applied for multi-objective optimization (Guo

et al., 2020; Cai et al., 2019), e.g., optimizing accuracy and size. However, none of these methods

can be applied for a joint architecture and hyperparameter search.

For the case of tabular datasets, a few works have applied hyperparameter optimization to

mitigate bias in models. Perrone et al. (2021) introduces a Bayesian optimization framework to

optimize accuracy of models while satisfying a bias constraint. The concurrent works of Schmucker

et al. (2020) and Cruz et al. (2020) extend Hyperband (Li et al., 2017) to the multi-objective setting
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and show its applications to fairness. The former was later extended to the asynchronous setting

(Schmucker et al., 2021). Lin et al. (2022) proposes de-biasing face recognition models through

model pruning. However, they consider just two architectures and just one set of hyperparameters.

To the best of our knowledge, no prior work uses any AutoML technique (NAS, HPO, or joint

NAS and HPO) to design fair face recognition models, and no prior work uses NAS to design fair

models for any application.

4.3 Architectures and Hyperparameters: A Case Study

In this section, we give an overview of our Neural Architecture Search-based bias miti-

gation technique as well as the experiments we ran in order to answer: are architectures and

hyperparameters important for fairness? To this end, we conduct an exploration of many different

model architectures using different hyperparameter combinations. We find strong evidence that

accuracy is not predictive of fairness metrics (4.7 in the appendix), which motivates us to use NAS

techniques to optimize fairness and accuracy jointly. We explore this in 4.4.

4.3.1 NAS-based Bias Mitigation

We propose to find fairer models and architectures not by using pre-, post-, or in-processing

techniques but by searching for and identifying a set of architectures and hyperparameters which

are fairer than the baseline. The first step of this methodology starts with identifying a search

space of architectures and hyperparameters of candidate models and then deploying NAS+HPO.

In the domain of face identification, we design a search space around the Dual Path Network

(DPN) (Chen et al., 2017) architecture, and detail why we made that decision in 4.3.2. In general,
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a domain expert using our NAS-based bias mitigation technique would be able to establish their

search space immediately. We discuss the details of the second step in 4.4.

4.3.2 Architectures and Hyperparameter Experiments

4.3.3 Experimental Setup.

We train and evaluate each model configuration on a gender-balanced subset of the two

most popular face identification datasets: CelebA and VGGFace2. CelebA (Liu et al., 2015)

is a large-scale face attributes dataset with more than 200K celebrity images and a total of

10 177 gender-labeled identities. VGGFace2 (Cao et al., 2018) is a much larger dataset designed

specifically for face identification and comprises over 3.1 million images and a total of 9 131

gender-labeled identities. While this work analyzes phenotypic metadata (perceived gender), the

reader should not interpret our findings absent a social lens of what these demographic groups

mean inside society. We guide the reader to Hamidi et al. (2018) and Keyes (2018) for a look at

these concepts for gender.

To study the importance of architectures and hyperparamters for fairness, we use the

following training pipeline – ultimately conducting 355 training runs with different combinations

of 29 architectures from the Pytorch Image Model (timm) database (Wightman, 2019) and

hyperparameters.

The list of the models we study from timm are: coat_lite_small (Xu et al., 2021),

convit_base (d’Ascoli et al., 2021), cspdarknet53 (Wang et al., 2020a), dla102x2 (Yu

et al., 2018), dpn107 (Chen et al., 2017), ese_vovnet39b (Lee and Park, 2020), fbnetv3_g

(Dai et al., 2021), ghostnet_100 (Han et al., 2020b), gluon_inception_v3 (Szegedy
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et al., 2016), gluon_xception65 (Chollet, 2017), hrnet_w64 (Sun et al., 2019), ig_res

next101_32x8d (Xie et al., 2016), inception_resnet_v2 (Szegedy et al., 2017), incep

tion_v4 (Szegedy et al., 2017), jx_nest_base (Zhang et al., 2021), legacy_senet154

(Hu et al., 2018), mobilenetv3_large_100 (Howard et al., 2019), resnetrs101 (Bello

et al., 2021), rexnet_200 (Han et al., 2020a), selecsls60b (Mehta et al., 2019), swin_base

_patch4_window7_224 (Liu et al., 2021), tf_efficientnet_b7_ns (Tan and Le, 2019),

tnt_s_patch16_224 (Han et al., 2021), twins_svt_large (Chu et al., 2021), vgg19

(Simonyan and Zisserman, 2015), vgg19_bn (Simonyan and Zisserman, 2015), visformer_

small (Chen et al., 2021), xception and xception65 (Chollet, 2017).

We conduct training runs with both the default hyperparameters as well as hyperparameters

which are standardized across all architecutres, e.g., AdamW (Loshchilov and Hutter, 2019) with

lr=0.001 and SGD with lr=0.1. For each model, we use the default learning rate and optimizer

that was published with that model. We then conduct a training run with these hyperparameters

for each of three heads, ArcFace (Wang et al., 2018), CosFace (Deng et al., 2019), and MagFace

(Meng et al., 2021). Next, we use that default learning rate with both AdamW and SGD optimizers

(again with each head). Finally, we also conduct training routines with AdamW and SGD with

unified learning rates (SGD with lr=0.1 and AdamW with lr=0.001). In total, we run a single

architecture between 9 and 13 times (9 times if the default optimizer and learning rates were the

same as the standardized, and 13 times otherwise). All other hyperparameters were the same for

each model training run.

We study at most 13 configurations per model ie 1 default configuration corresponding

to the original model hyperparameters with CosFace as head. Further, we have at most 12

configs consisting of the 3 heads (CosFace, ArcFace, MagFace) × 2 learning rates(0.1,0.001) × 2
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optimizers (SGD, AdamW). All the other hyperparameters are held constant for training all the

models. All model configurations are trained with a total batch size of 64 on 8 RTX2080 GPUS

for 100 epochs each.

4.3.4 Evaluation procedure.

The standard approach in face identification tasks is to evaluate the performance of the

learned representations. Recall that face recognition models usually learn representations with an

image backbone and then learn a mapping from those representations onto identities of individuals

with the head of the model. As is commonplace (Cherepanova et al., 2021, 2022), evaluating

the learned feature representations allows us to better isolate the impact of the image backbone

architecture. We break each dataset into train, validation, and test sets. We conduct our search for

novel architectures using the train and validation splits, and then show the improvement of our

model on the test set.

The main performance metric for the models will be representation error, which we will

henceforth simply refer to as Error. Recall that we pass each test image through a trained

model and save the learned representation. To compute Error, we merely ask, for a given probe

image/identity, whether the closest image in feature space is not of the same person based on l2

distance.

The most widely used fairness metric in face identification is rank disparity, which is ex-

plored in the NIST FRVT (Patrick J. Grother, 2010). To compute the rank of a given image/identity,

we ask how many images of a different identity are closer to the image in feature space. We define

this index as the rank of a given image under consideration. Thus, Rank(image) = 0 if and only
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Table 4.1: The fairness metrics explored in this chapter. Rank Disparity is explored in the main
paper and the other metrics are reported in 4.5.2

Fairness Metric Equation
Rank Disparity |Rank(male)− Rank(female)|
Disparity |Accuracy(male)− Accuracy(female)|
Ratio |1− Accuracy(male)

Accuracy(female)
|

Rank Ratio |1− Rank(male)
Rank(female)

|

Error Ratio |1− Error(male)
Error(female)

|
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Figure 4.2: (Left) CelebA (Right) VGGFace2. Error-Rank Disparity Pareto front of the archi-
tectures with lowest error (< 0.3). Models in the lower left corner are better. The Pareto front is
notated with a dashed line. Other points are architecture and hyperparameter combinations which
are not Pareto-optimal.

if Error(image) = 0; Rank(image) > 0 if and only if Error(image) = 1. We examine the rank

disparity: the absolute difference of the average ranks for each perceived gender in a dataset D:

∣∣∣∣∣ 1

|Dmale|
∑

x∈Dmale

Rank (x)− 1

|Dfemale|
∑

x∈Dfemale

Rank(x)

∣∣∣∣∣. (4.1)

We focus on rank disparity throughout the main body of this chapter as it is the most widely

used in face identification, but we explore other forms of fairness metrics in face recognition as

well. We study these models across five important fairness metrics in face identification: Rank

Disparity, Disparity, Ratio, Rank Ratio, and Error Ratio. Each of these metrics is defined in

Table 4.1.
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4.3.5 Results and Discussion.

By plotting the performance of each training run on the validation set with the error on the

x-axis and rank disparity on the y-axis in 4.2, we can easily conclude two main points. First,

optimizing for error does not always optimize for fairness, and second, different architectures

have different fairness properties. We also find the DPN architecture has the lowest error and is

Pareto-optimal on both datasets; thus, we will use that architecture to design our search space in

4.4.

On the first point, a search for architectures and hyperparameters which have high perfor-

mance on traditional metrics does not translate to high performance on fairness metrics. We see

that within models with lowest error – those models which are most interesting to the community –

there is low correlation between error and rank disparity (for models with error < 0.3, ρ = .113

for CelebA and ρ = .291 for VGGFace2). We do note however, the differences between the two

datasets at the most extreme low errors. First, for VGGFace2, the baseline models already have

very low error, with there being 10 models with error less than 0.05; CelebA only has three such

models. Additionally, models with low error also have low Rank Disparity on VGGFace2 whereas

this is not the case on CelebA; however, we foreshadow that this is more true on the validation set

than it is on the test set. This can be seen by looking at the Pareto curves in 4.2.

We see that optimizing architectures and hyperparameters for error alone will not lead to

fair models. The Pareto optimal models on CelebA are versions of DPN, TNT, ReXNet, VovNet,

and ResNets. The Pareto optimal models on VGGFace2 are DPN and ReXNet. Further, different

architectures exhibit different optimal hyperparameters. For example on CelebA, the Xception65

architecture finds SGD with ArcFace and AdamW with ArcFace are Pareto-optimal whereas the
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Inception-ResNet architecture finds MagFace and CosFace optimal with SGD.

4.4 Neural Architecture Search for Bias Mitigation

In this section, we employ joint NAS+HPO as a bias mitigation strategy. Inspired by our

findings on the importance of architecture and hyperparameters for fairness in 4.3, we initiate the

first joint NAS+HPO study for fairness in face recognition. We start by describing our search space

and search strategy. We then present a comparison between the architectures obtained from our

NAS-based mitigation strategy and other popular face recognition bias mitigation strategies. We

conclude that our joint NAS+HPO indeed discovers simultaneously accurate and fair architectures.

4.4.1 Search Space Design and Search Strategy

We design our search space based on our analysis in 4.3, specifically around the Dual Path

Networks (Chen et al., 2017) architecture which has the lowest error and is Pareto-optimal on both

datasets. In particular, our search space is inspired by DPN due to its strong trade-off between

rank disparity and accuracy as seen in 4.2.

4.4.2 Hyperparameter Search Space Design.

We choose three categories of hyperparameters for NAS+HPO: the architecture head/loss,

the optimizer, and the learning rate (4.2).
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4.4.3 Architecture Search Space Design.

Dual Path Networks (Chen et al., 2017) for image classification share common features

(ResNets (He et al., 2016a)) while possessing the flexibility to explore new features (Huang et al.,

2017) through a dual path architecture. We replace the repeating 1x1_conv-3x3_conv-1x1_

conv block with a simple recurring searchable block. depicted in 4.6. Furthermore, we stack

multiple such searched blocks to closely follow the architecture of Dual Path Networks. We have

nine possible choices for each of the three operations in the DPN block, each of which we give

a number 1 through 9, depicted in 4.6. The choices include a vanilla convolution, a convolution

with pre-normalization and a convolution with post-normalization

4.4.4 Obtained architectures and hyperparameter configurations from Black-

Box-Optimization

In 4.3 we present the architectures and hyperparameters discovered by SMAC. Particularly

we observe that conv 3x3 followed batch norm is a preferred operation and CosFace is the

preferred head/loss choice.

We thus have 81 different architectures which can be searched (in addition to an infinite

number of hyperparameter sets). We denote each of these architectures by XYZ where X, Y, Z ∈

[9], i.e., the architecture 180 would represent the architecture which has the first operation,

followed by the eighth, followed by the zeroth.

To summarize, our search space consists of a choice among 81 different architecture types,

three different head types, three different optimizers, and a infinite number of choices for the
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Figure 4.3: SMAC discovers the above building blocks with (a) corresponding to architecture with
CosFace, with SGD optimizer and learning rate of 0.2813 as hyperparamters (b) corresponding to
CosFace, with SGD as optimizer and learning rate of 0.32348 and (c) corresponding to CosFace,
with AdamW as optimizer and learning rate of 0.0006

learning rate.

We navigate the search space using Black-Box-Optimization (BBO) with the following

desiderata:

4.4.5 Multi-fidelity optimization.

A single function evaluation for our use-case corresponds to training a deep neural network

on a given dataset. This is generally quite expensive for traditional deep neural networks on

moderately large datasets. Hence we would like to use cheaper approximations to speed up the

black-box algorithm with multi-fidelity optimization techniques (Schmucker et al., 2021; Li et al.,

2017; Falkner et al., 2018), e.g., by evaluating many configurations based on short runs with few

epochs and only investing more resources into the better-performing ones.
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4.4.6 Multi-objective optimization.

We want to observe a trade-off between the accuracy of the face recognition system and

the fairness objective of choice, so our joint NAS+HPO algorithm supports multi-objective

optimization (Paria et al., 2020; Davins-Valldaura et al., 2017; Mao-Guo et al., 2009).

The SMAC3 package (Lindauer et al., 2022) offers a robust and flexible framework for

Bayesian Optimization with few evaluations. SMAC3 offers a SMAC4MF facade for multi-fidelity

optimization to use cheaper approximations for expensive deep learning tasks like ours. We

choose ASHA (Schmucker et al., 2021) for cheaper approximations with the initial and maximum

fidelities set to 25 and 100 epochs, respectively, and η = 2. Every architecture-hyperparameter

configuration evaluation is trained using the same training pipeline as in 4.3. For the sake of

simplicity, we use the ParEGO (Davins-Valldaura et al., 2017) algorithm for multi-objective

optimization with ρ set to 0.05.

4.5 Results

Recall our main motivation is to demonstrate that our NAS-based bias mitigation strategy is

comparative to or better than other strategies in reducing bias in facial identification. We proceed in

two steps: first, we discuss the model found with our NAS+HPO approach, and then we compare

it to other mitigation baselines:

4.5.1 Novel architectures

We conducted one NAS+HPO search for each dataset by searching on the train and validation

sets. After running these searches, we identified three new candidate architectures for CelebA
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Validation Set Test Set

Figure 4.4: Pareto front of the models discovered by SMAC and the rank-1 models from timm for
the (a) validation and (b) test sets on CelebA. Each point corresponds to the mean and standard
error of an architecture after training for 3 seeds. The SMAC models Pareto-dominate the top
performing timm models (Error < 0.1).

(SMAC_000, SMAC_010, and SMAC_680), and one candidate for VGGFace2 (SMAC_301)

where the naming convention follows that described in 4.4.1. We then retrained each of these

models and those high performing models from 4.3 for three seeds to study the robustness of error

and disparity for the models; we evaluated their performance on the validation and test sets for

each dataset, where we follow the evaluation scheme of 4.3.

On CelebA (4.4), our models Pareto-dominate all models with nontrivial accuracy on the

val set. On the test set, our models still Pareto-dominate all highly competitive models (with

Error<0.1), but one of the original configurations (DPN with Magface) also becomes Pareto-

optimal. However, the error of this architecture is 0.13, which is significantly higher than our

models (0.03-0.04).

On VGGFace2 (4.5), our models are Pareto-optimal for both the validation and test sets. On

the test set of VGGFace2 it is much harder to achieve low disparity, yet our model improves upon

the other baselines. Furthermore, from 4.4 it is also apparent that some models such as VoVNet
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Validation Set Test Set

Figure 4.5: Pareto front of the models discovered by SMAC and the rank-1 models from timm
for the (a) validation and (b) test sets on VGGFace2. Each point corresponds to the mean and
standard error of an architecture after training for 3 seeds. The SMAC models Pareto-dominate
the top performing timm models (Error<0.1).

and DenseNet show very large standard errors across seeds. Hence, it becomes very important to

also study the robustness of the models across seeds along with the accuracy and disparity Pareto

front.

We also compare to the current state of the art baseline ArcFace (Deng et al., 2019), which,

using our training pipeline on CelebA data with face identification as our task, achieves an error

of 4.35%. Our best performing novel architecture, however, achieves an error of 3.10%, clearly

outperforming ArcFace. Similarly, the current VGGFace2 state of the art baseline (Wang et al.,

2021) achieves an error of 4.5% and our best performing novel architecture achieves a much lower

error of 3.66%.

4.5.2 Analysis of the Pareto-Front of different Fairness Metrics

In this section, we include additional plots that support and expand on the main paper.

Primarily, we provide further context of the Figures in the main body in two ways. First, we
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Table 4.2: Searchable hyperparameter choices.

Hyperparameter Choices
Architecture Head/Loss MagFace, ArcFace, CosFace
Optimizer Type Adam, AdamW, SGD
Learning rate (conditional) Adam/AdamW → [1e− 4, 1e− 2],

SGD → [0.09, 0.8]

Table 4.3: Operation choices and definitions.

Operation Index Operation Definition
0 BnConv1x1 Batch Normalization → Convolution with 1x1 kernel
1 Conv1x1Bn Convolution with 1x1 kernel → Batch Normalization
2 Conv1x1 Convolution with 1x1 kernel

3 BnConv3x3 Batch Normalization → Convolution with 3x3 kernel
4 Conv3x3Bn Convolution with 3x3 kernel → Batch Normalization
5 Conv3x3 Convolution with 3x3 kernel

6 BnConv5x5 Batch Normalization → Convolution with 5x5 kernel
7 Conv5x5Bn Convolution with 5x5 kernel → Batch Normalization
8 Conv5x5 Convolution with 5x5 kernel

BnConv1x1
BnConv3x3

BnConv5x5

Conv1x1

Conv3x3

Conv5x5

Conv1x1Bn

Conv3x3Bn

Conv5x5Bn

Figure 4.6: DPN block (left) vs. our searchable block (right).

provide replication plots of the figures in the main body but for all models. Recall, the plots in

the main body only show models with Error<0.3, since high performing models are the most of

interest to the community. Second, we also show figures which depict other fairness metrics used

in facial identification. The formulas for these additional fairness metrics can be found in 4.1.
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Figure 4.7: Replication of CelebA 4.2 with all data points. Error-Rank Disparity Pareto front of
the architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant.

We replicate 4.2 in 4.7 and 4.8. We add additional metrics for CelebA in 4.9-4.11 and for

VGGFace in 4.12-4.15.

4.5.3 Novel Architectures Outperform other Bias Mitigation Strategies

There are three common pre-, post-, and in-processing bias mitigation strategies in face

identification. First, Chang et al. (2020) demonstrated that randomly flipping labels in the training

data of the subgroup with superior accuracy can yield more fair systems; we call this technique

Flipped. Next, Wang and Deng (2020) use different angular margins during training and

therefore promoting better feature discrimination for the minority class; we call this technique

Angular. Finally, Morales et al. (2020) introduced SensitiveNets which is a sensitive

information removal network trained on top of a pre-trained feature extractor with an adversarial
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Figure 4.8: Replication of VGGFace2 4.2 with all data points. Error-Rank Disparity Pareto front of
the architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant.

sensitive regularizer. While other bias mitigation techniques exist in face recognition, these are

the most used and pertient to face identification. See Cherepanova et al. (2023) for an overview

of the technical challenges of bias mitigation in face recognition. We take top performing,

Pareto-optimal models from the previous section and apply the three bias mitigation techniques:

Flipped, Angular, and SensitiveNets. We also apply these same techniques to the novel

architectures that we found. We report results in 4.6.

Critically, we observe that the novel architectures we found with our NAS-based approach

Pareto-dominate the bias-mitigated models. In VGGFace2, the SMAC_301 model achieves the

best performance, both in terms of error and fairness, when comparing to the bias-mitigated

models. On CelebA, the same is true for the SMAC_680 model.

Additionally, we combined the three other bias mitigation methods with our SMAC models,

in other words, we conducted our NAS approach and then applied the Flipped, Angular,
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Figure 4.9: Replication of 4.7 on the CelebA validation dataset with Ratio of Ranks (left) and
Ratio of Errors (right) metrics.

and SensitiveNets approach as well. We see that on both datasets, we continue to Pareto-

dominate the other bias mitigation strategies. These techniques ultimately yield the model with the

lowest rank disparity of all the models (0.18 on VGGFace2 and 0.03 on CelebA). In particular, the

bias improvement of SMAC_000+Flipped model is notable, achieving a score of 0.03 whereas

the lowest rank disparity of any model from 4.4 is 2.63, a 98.9% improvement.

In the next subsection, we demonstrate that this result is robust to the fairness metric —

specifically our bias mitigation strategy Pareto-dominates the other approaches on all five fairness

metrics.

4.5.4 Comparison to other Bias Mitigation Techniques on all Fairness Metrics

We have shown that our bias mitigation approach Pareto-dominates the existing bias mitiga-

tion techniques in face identification on the Rank Disparity metric. Here, we perform the same
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Figure 4.10: Replication of 4.7 on the CelebA validation dataset with the Disparity in accuracy
metric.

experiments but evaluate on the four other metrics discussed in the face identification literature:

Disparity, Rank Ratio, Ratio, and Error Ratio.

Recall, we take top performing, Pareto-optimal models from Section 4.4 and apply the three

bias mitigation techniques: Flipped, Angular, and SensitiveNets. We also apply these

same techniques to the novel architectures that we found. We report results in 4.6.

In Table 4.4, we see that in every metric, the SMAC_301 architecture is Pareto-dominant

and that the SMAC_301, demonstrating the robustness of our approach.

4.5.5 Novel Architectures Generalize to Other Datasets

We also see that when we transfer our novel architecture’s performance to other fairness-

related dataests in facial recognition, we outperform the other architectures significantly. We take

the state-of-the-art models from our experiments and test the weights from training on CelebA
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Figure 4.11: Replication of 4.7 on the CelebA validation dataset with the Ratio in accuracy metric.

and VGGFace2 on different datasets which the models did not see during training. Specificaly,

we transfer the evaluation of the trained model weights from CelebA and VGGFace2 onto the

following datasets: LFW (Huang et al., 2008), CFP_FF (Sengupta et al., 2016), CFP_FP (Sengupta

et al., 2016), AgeDB (Moschoglou et al., 2017), CALFW (Zheng et al., 2017), CPLPW (Zheng

and Deng, 2018). We see in Table 4.7 that our approach yields the architectures with the highest

performance on the other datasets, meaning our approach is the most generalizable compared to

state of the art recognition models in transfer learning to other face datasets.

4.5.6 Novel Architectures Generalize to Other Sensitive Attributes

The superiority of our novel architectures even goes beyond accuracy when transfering to

other datasets — our novel architectures have superior fairness property compared to the existing

architectures even on datasets which have completely different protected attributes than were

used in the architecture search. To inspect the generalizability of our approach to other protected
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Figure 4.12: Replication of 4.8 on the VGGFace2 validation dataset with Ratio of Ranks metric.

attributes, we transferred our models pre-trained on CelebA and VGGFace2 (which have a gender

presentation category) to the RFW dataset (Wang et al., 2019a) which includes a protected attribute

for race. We see that our novel architectures always outperforms the existing architectures across

all five fairness metrics studied in this work. See Table 4.8 for more details on each metric. They

are always on the Pareto front for all fairness metrics considered, and mostly Pareto-dominate all

other architectures on this task. In this setting, since the race label in RFW is not binary, the Rank

Disparity metric considered in Table 4.8.

4.5.7 Novel Architectures Have Less Linear-Separability of Protected Attributes

Our comprehensive evaluation of multiple face recognition benchmarks establishes the

importance of architectures for fairness in face-recognition. However, it is natural to question

what makes the discovered architectures fair in the first place? To answer this question we use

linear probing to dissect the intermediate features of our searched architectures and DPNs, which
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Figure 4.13: Replication of 4.8 on the VGGFace2 validation dataset with Ratio of Errors metric.

our search space is base upon. Intuitively given that our networks are trained only on the task

of face recognition, we do not want the intermediate feature representations to implicitly exploit

knowledge about protected attributes (eg: gender). To this end we insert linear probes (Alain and

Bengio, 2016) at the last two layers of different pareto-optimal DPNs and the model obtained

by Neural Architecture Search. Specifically we train an MLP on the feature representations

extracted from the pre-trained models and the protected attributes as labels and compute the

gender-classification accuracy on a held-out set. Our simple linear probe is represented in the

equation below. We consider only the last two layers, so k assumes the values of N and N−1 with

N being the number of layers in DPNs (and the searched models). We represent the classification

probabilities for the genders by gpk:

gpk = softmax(Wk + b) (4.2)
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Figure 4.14: Replication of 4.8 on the VGGFace2 validation dataset with the Disparity in accuracy
metric.

We provide the classification accuracies for the different pre-trained models on VGGFace2 in

4.9. It is interesting to see that the searched architectures maintain a lower classification accuracy

as desirable. Inline with this observation the TSNE plots in 4.17 the DPN dislays a higher degree

of separability of features.

4.6 Conclusion, Future Work and Limitations

While other bias mitigation strategies operate by changing loss functions or model pa-

rameters, we propose an entirely new direction: change the topology of the network. With

our bias mitigation technique centering around Neural Architecture Search and Hyperparameter

Optimization, we showed the competitiveness of our approach compared to other common bias

mitigation techniques in facial recognition. We conducted the first large-scale analysis of the

relationship among hyperparameters and architectural properties, and accuracy, bias, and disparity
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Figure 4.15: Replication of 4.8 on the VGGFace2 validation dataset with the Ratio in accuracy
metric.

in predictions. We trained a set of 29 architectures totalling 355 models and 88 493 GPU hours

across different loss functions and architecture heads on CelebA and VGGFace2 face identification

datasets, analyzing their inductive biases for fairness and accuracy. Our observations challenge

conventional practice and show that it is actually better to just search for a more fair architecture

than it is to adjust an unfair one. The implicit convention of choosing the highest-accuracy

architectures is a sub-optimal strategy, and we suggest that architectures and hyperparameters play

a significant role in determining the fairness-accuracy tradeoff.

Since our work lays the foundation for studying NAS+HPO for fairness, it opens up a

plethora of opportunities for future work. We expect the future work in this direction to focus on

studying different multi-objective algorithms (Fu and Liu, 2019; Laumanns and Ocenasek, 2002)

and NAS techniques (Liu et al., 2018a; Zela et al., 2019; White et al., 2021) to search for inherently

fairer models. Further, it would be interesting to study how the properties of the architectures

discovered translate across different demographics and populations. Another potential direction of
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Table 4.4: Comparison bias mitigation techniques where the SMAC models were found on
VGGFace2 with NAS bias mitigation technique and the other three techniques are standard in facial
recognition: Flipped (Chang et al., 2020), Angular (Morales et al., 2020), and Discriminator (Wang
and Deng, 2020). Items in bold are Pareto-optimal. The values show (Error;metric).

Rank Disparity Disparity
Model Baseline Flipped Angular SensitiveNets Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.23) (4.95;0.18) (4.14;0.25) (6.20;0.41) (3.66;0.03) (4.95;0.02) (4.14;0.04) (6.14;0.04)
DPN (3.56;0.27) (5.87;0.32) (6.06;0.36) (4.76;0.34) (3.98;0.04) (5.87;0.05) (6.06;0.05) (4.78;0.05)
ReXNet (4.09;0.27) (5.73;0.45) (5.47;0.26) (4.75;0.25) (4.09;0.03) (5.73;0.05) (5.47;0.05) (4.75;0.04)
Swin (5.47;0.38) (5.75;0.44) (5.23;0.25) (5.03;0.30) (5.47;0.05) (5.75;0.04) (5.23;0.04) (5.03;0.04)

Rank Ratio Ratio
Model Baseline Flipped Angular SensitiveNets Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.37) (4.95;0.21) (4.14;0.39) (6.14;0.41) (3.66;0.03) (4.95;0.02) (4.14;0.04) (6.14;0.05)
DPN (3.98;0.49) (5.87;0.49) (6.06;0.54) (4.78;0.49) (3.98;0.04) (5.87;0.06) (6.06;0.06) (4.78;0.05)
ReXNet (4.09;0.41) (5.73;0.53) (5.47;0.38) (4.75;0.34) (4.09;0.04) (5.73;0.05) (5.47;0.05) (4.75;0.04)
Swin (5.47;0.47) (5.75;0.47) (5.23;0.42) (5.03;0.43) (5.47;0.05) (5.75;0.05) (5.23;0.05) (5.03;0.05)

Error Ratio
Model Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.58) (4.95;0.29) (4.14;0.60) (6.14;0.52)
DPN (3.98;0.65) (5.87;0.62) (6.06;0.62) (4.78;0.69)
ReXNet (4.09;0.60) (5.73;0.57) (5.47;0.59) (4.75;0.58)
Swin (5.47;0.60) (5.75;0.56) (5.23;0.60) (5.03;0.60)

future work is including priors and beliefs about fairness in the society from experts to further

improve and aid NAS+HPO methods for fairness by integrating expert knowledge. Finally, given

the societal importance, it would be interesting to study how our findings translate to real-life face

recognition systems under deployment.

While our work is a step forward in both studying the relationship among architectures,

hyperparameters, and bias, and in using NAS techniques to mitigate bias in face recognition

models, there are important limitations to keep in mind. Since we have studied our findings on

only a few datasets, these may not generalize to other datasets and fairness metrics. Secondly, since

face recognition applications span government surveillance (Hill, 2020b), target identification

from drones (Marson and Forrest, 2021), and identification in personal photo repositories (Google,

2021b), our findings need to be studied thoroughly across different demographics before they
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Table 4.5: Taking the highest performing models from the Pareto front of both VGGFace2
and CelebA, we transfer their evaluation onto six other common face recognition datasets:
LFW (Huang et al., 2008), CFP_FF (Sengupta et al., 2016), CFP_FP (Sengupta et al., 2016),
AgeDB (Moschoglou et al., 2017), CALFW (Zheng et al., 2017), CPLPW (Zheng and Deng,
2018). The novel architectures which we found with our bias mitigation strategy significantly out
perform all other models.

Architecture (trained on VGGFace2) LFW CFP_FF CFP_FP AgeDB CALFW CPLPW

Rexnet_100 82.6 80.9142 65.514 59.1833 68.23 62.149
DPN_SGD 93.0 91.8142 78.957 71.866 78.266 72.966
DPN_AdamW 78.66 77.17 64.35 61.316 64.78 60.3
SMAC_301 96.449 95.17 87.35 81.533 85.916 82.25

Architecture (trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW

Rexnet_200 71.18 73.62 54.07 56.31 61.01 52.22
DPN_CosFace 88.86 90.47 68.53 64.84 76.09 60.66
DPN_MagFace 85.88 89.03 61.30 60.00 73.50 55.53
DenseNet161 81.72 81.88 64.82 55.16 65.7 58.40
Ese_Vovnet39 73.31 74.42 63.33 50.00 59.86 57.93
SMAC_000 94.98 95.60 74.24 80.23 84.73 64.22
SMAC_010 94.22 95.08 75.14 82.35 85.35 66.26
SMAC_680 87.45 90.34 64.22 61.28 76.16 56.16

could be deployed in real-life face recognition systems. Further, it is important to consider how

the mathematical notions of fairness used in research translate to those actually impacted (Saha

et al., 2020), which is a broad concept without a concise definition. Before deploying a particular

system that is meant to improve fairness in a real-life application, we should always critically

ask ourselves whether doing so would indeed prove beneficial to those impacted by the given

sociotechnical system under consideration or whether it falls into one of the traps described by

Selbst et al. (2019). In contrast to some other works, we do, however, feel, that our work helps to

overcome the portability trap since it empowers domain experts to optimize for the right fairness

metric, in connection with public policy experts, for the problem at hand rather than only narrowly

optimizing one specific metric.
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Table 4.6: Comparison bias mitigation techniques where the SMAC models were found with
NAS bias mitigation technique and the other three techniques are standard in facial recognition:
Flipped (Chang et al., 2020), Angular (Morales et al., 2020), and Discriminator (Wang and Deng,
2020). Items in bold are Pareto-optimal. The values show (Error;Rank Disparity).

Trained on VGGFace2 Trained on CelebA
Model Baseline Flipped Angular SensitiveNets Model Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.23) (4.95;0.18) (4.14;0.25) (6.20;0.41) SMAC_000 (3.25;2.18) (5.20;0.03) (3.45;2.28) (3.45;2.18)
DPN (3.56;0.27) (5.87;0.32) (6.06;0.36) (4.76;0.34) SMAC_010 (4.14;2.27) (12.27; 5.46) (4.50;2.50) (3.99;2.12)
ReXNet (4.09;0.27) (5.73;0.45) (5.47;0.26) (4.75;0.25) SMAC_680 (3.22;1.96) (12.42;4.50) (3.80;4.16) (3.29;2.09)
Swin (5.47;0.38) (5.75;0.44) (5.23;0.25) (5.03;0.30) ArcFace (11.30;4.6) (13.56;2.70) (9.90;5.60) (9.10;3.00)

Figure 4.16: Models trained on CelebA (left) and VGGFace2 (right) evaluated on a dataset with
a different protected attribute, specifically on RFW with the racial attribute, and with the Rank
Disparity metric. The novel architectures out perform the existing architectures in both settings.
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Table 4.7: We transfer the evaluation of top performing models on VGGFace2 and CelebA onto
six other common face recognition datasets: LFW (Huang et al., 2008), CFP_FF (Sengupta et al.,
2016), CFP_FP (Sengupta et al., 2016), AgeDB (Moschoglou et al., 2017), CALFW (Zheng et al.,
2017), CPLPW (Zheng and Deng, 2018). The novel architectures which we found with our bias
mitigation strategy significantly out perform all other models. Full table is reported in Table 4.5.

Architecture (trained on VGGFace2) LFW CFP_FF CFP_FP AgeDB CALFW CPLPW

Rexnet_100 82.6 80.9142 65.514 59.1833 68.23 62.149
DPN_SGD 93.0 91.8142 78.957 71.866 78.266 72.966
DPN_AdamW 78.66 77.17 64.35 61.316 64.78 60.3
SMAC_301 96.449 95.17 87.35 81.533 85.916 82.25

Architecture (trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW

DPN_CosFace 88.86 90.47 68.53 64.84 76.09 60.66
DPN_MagFace 85.88 89.03 61.30 60.00 73.50 55.53
SMAC_000 94.98 95.60 74.24 80.23 84.73 64.22
SMAC_010 94.22 95.08 75.14 82.35 85.35 66.26

Table 4.8: Taking the highest performing models from the Pareto front of both VGGFace2 and
CelebA, we transfer their evaluation onto a dataset with a different protected attribue – race – on
the RFW dataset (Wang et al., 2019a). The novel architectures which we found with our bias
mitigation strategy are always on the Pareto front, and mostly Pareto-dominant of the traditional
architectures.

Fairness Metric Transfer from CelebA Transfer from VGGFace2

Rank Disparity Pareto Dominant Pareto Optimal
Disparity Pareto Dominant Pareto Dominant
Rank Ratio Pareto Optimal Pareto Optimal
Ratio Pareto Dominant Pareto Dominant
Error Ratio Pareto Optimal Pareto Optimal

Table 4.9: Linear Probes on VGGFace2. Lower accuracy is better

Architecture (pre-trained on VGGFace2) Accuracy on Layer N Accuracy on Layer N-1
DPN_MagFace_SGD 86.042% 95.461%
DPN_CosFace_SGD 90.719% 93.787%

DPN_CosFace_AdamW 87.385% 94.444%
SMAC_301 69.980% 68.240%
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(a) (b)

(c) (d)

Figure 4.17: TSNE plots for models pretrained on VGGFace2 on the test-set (a) SMAC model last
layer (b) DPN MagFace on the last layer (b) SMAC model second last layer (b) DPN MagFace on
the second last layer. Note the better linear separability for DPN MagFace in comparison with the
SMAC model
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I’ve learned that people will forget what

you said, people will forget what you did,

but people will never forget how you made

them feel.

Maya Angelou

Chapter 5: Open Questions

In this chapter, I’ll present some future research directions and a list of open questions that

arose from the research performed as part of this thesis, or from discussions with other researchers

and practioners in the area.

5.1 Implications of Adversarial Robustness Bias

The main result from Chapter 2 is that there is an interplay between where data are positioned

in space and where decision boundaries are drawn. Further, that this interplay can lead to some

groups of data being much closer to the decision boundary than others. In the thesis, we uncover

some examples of this and demonstrate that the behavior can be seen to be robust across different

datasets and models. However, an open question remain which we were unable to discuss in this

research.
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Open Question #1: How does the topology of the data manifold relate to the presence of

robustness bias?

When we ask why we observed adversarial robustness in the wild in Chapter 2, one hypoth-

esis that comes to mind is that these groups of points which are closer to the decision boundary

may be less compact in either input space or feature space. The idea here being that if a group

of points is less compact, then drawing a decision boundary around those points could naturally

place that decision boundary closer to those points. One way to test this theory would be to look at

the topological features of these points in space and see if any emergent patterns appear pertaining

to, perhaps, correlation to the adversarial robustness metric.

5.2 Causal Reasoning Behind Robustness Disparities in Face Detection

In Chapter 3, we explore the disparities in the robustness of faces to natural corruptions.

We saw some results that align with past work in topics of fairness in facial analysis systems;

specifically we observed that individuals that were older, darker skinned, or dimly lit were more

susceptible to corruptions causing missed face detections than their peers. However, we saw a

surprising result that masculine-presenting individuals were those who were more susceptible.

One question we can pose is why?

Open Question #2: Why are masculine-presenting individuals more likely to be missed

by a face detection system after a natural image corruption than their feminine-presenting

counterparts?

One hypothesis that might be at play here is the size of the face in the image. In the analysis

above, we did not control for bounding box size of the face. That variable could be added to the
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regressions which we ran in Appendix A to observe how bounding box size impacts the final

analysis.

Additionally, our analysis was performed primarily within the gender binary, which can

obscure the impacts of these facial analysis systems on those of us who live outside the gender

binary. Thus, we could ask how the face detection softwares perform on these individuals:

Open Question #3: What are the experiences of trans/non-binary individuals with face

detection?

Of course, a research direction which pursues this question, must be carefully considered

— both in terms of it’s intentions and impacts. Drawing on work concerning gender, with an eye

towards trans and non-binary experiences, the operalization of gender in facial recognition has

long been trans-exclusionary (Hamidi et al., 2018; Keyes, 2018). While some work like the CCD

dataset (Hazirbas et al., 2021) does ask for actor supplied gender labels with an open ability to

provide their own text, the number of individuals who fall outside the binary in these datasets

are scant. The community as a whole needs to do better to support the experiences of trans and

non-binary individuals.

5.3 Applicability of NAS+HPO to Other Domains

We saw in Chapter 4 that the bias mitigation approach which we described can be vastly

beneficial in the domain of face identification. However, future work should be conducted to see

whether this approach is beneficial in other domains.

Open Question #4: Does the NAS+HPO bias mitigation technique work in other vision

tasks like chest x-rays or visual domains with limited data?
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First, I think it’d be easiest to apply our techniques, proven to be superior on face identifica-

tion, to other visual data domains. Another visual domain which could take an easy transferal of

the approach would be the chest X-ray dataset CheXpert (Irvin et al., 2019). This ask would be an

easily application of our existing method and codebase to this different dataset.

Another straightforward application of the approach would be to other vision-based domains

with fairness imposed via imbalanced data classes. As is often common in many commercial

applications, there may be severely limited number of examples of data which are of interest

to a company, but performance on those types of data are important. This can be cast under a

fairness problem as well where performance on the class with fewer examples should be preserved.

Types of this exploration can be found in the works like that of Buda et al. (2018) and Wang et al.

(2020b).

Additionally, we can think of other data modalities beyond visual data which could benefit

from NAS+HPO bias mitigation strategies. Specifically, we ask:

Open Question #5: How do bias mitigation strategies in tabular data domains compare to

the NAS+HPO bias mitigation presented in this work?

We know well that most fairness research and literature in bias mitigation exist within the

realm of tabular data. Famous tabular datasets exist and are well-studied Becker and Kohavi

(1996); Dieterich et al. (2016), and critiqued (Ding et al., 2021; Bao et al., 2021) in the fairness

literature. However, this thesis did not examine tabular data at all.

As deep learning for tabular data continues to develop, there is the opportunity to combine

both finding good neural architectures for tabular data while simultaneously addressing bias

concerns within those architectures and their outputs. I’m excited by the potential confluence of

these two areas and hope to continue to study where and how NAS+HPO bias mitigations can be
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combined with tabular architectural and hyperparameter searches.
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Appendix A: Additional Results: Robustness Bias in Face Detection

A.1 Statistical Significance Regressions for Average Precision

A.1.1 Main Tables

AP p-values for pairwise Wilcoxon test with Bonferroni correction for model on the Adience

dataset can befound in Table A.2

AP p-values for pairwise Wilcoxon test with Bonferroni correction for model on the CCD

dataset can befound in Table A.3

AP p-values for pairwise Wilcoxon test with Bonferroni correction for model on the MIAP

dataset can befound in Table A.4

AP p-values for pairwise Wilcoxon test with Bonferroni correction for model on the UTK

dataset can befound in Table A.5

A.1.2 AP — Corruption Comparison Claims

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on AWS

and Adience can be found in Table A.6

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Azure

and Adience can be found in Table A.7
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Table A.1: The best and worst performing perturbations for each dataset and model.

AWS Azure GCP MogFace TinaFace Yolo5Face

Adience
Best Brightness Brightness Pixelate Brightness Brightness Brightness

Worst
Impulse
Noise

Shot
Noise

Snow
Impulse
Noise

Impulse
Noise

Impulse
Noise

CCD
Best

Glass
Blur

Glass
Blur

Glass
Blur

Glass
Blur

Glass
Blur

Glass
Blur

Worst
Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

MIAP
Best Brightness Glass Blur

JPEG
Compression

Brightness Brightness Brightness

Worst
Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

Zoom
Blur

UTKFace
Best Brightness Brightness

JPEG
Compression

Brightness Brightness Brightness

Worst
Elastic

Transform
Elastic

Transform
Elastic

Transform
Elastic

Transform
Impulse
Noise

Shot
Noise

Table A.2: AP. Pairwise Wilcoxon test with Bonferroni correction for model on Adience

AWS Azure GCP MogFace TinaFace

Azure 0
GCP 0 0

MogFace 0 0 0
TinaFace 0 0 0 0
Yolov5 0 0 0 0 0

Table A.3: AP. Pairwise Wilcoxon test with Bonferroni correction for model on CCD

AWS Azure GCP MogFace TinaFace

Azure 0
GCP 0 0

MogFace 0 0.071 0
TinaFace 0 0 0 0
Yolov5 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on GCP

and Adience can be found in Table A.8

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Mog-
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Table A.4: AP. Pairwise Wilcoxon test with Bonferroni correction for model on MIAP

AWS Azure GCP MogFace TinaFace

Azure 0
GCP 0 0

MogFace 0 0 0
TinaFace 0 0 0 0
Yolov5 0 0 0 0 0

Table A.5: AP. Pairwise Wilcoxon test with Bonferroni correction for model on UTK

AWS Azure GCP MogFace TinaFace

Azure 0
GCP 0 0

MogFace 0 0 0
TinaFace 0 0 0 0
Yolov5 0 0 0 0 0

Table A.6: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on AWS and
Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.099
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0.779
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0.00000 0 0 0 0 0 0 0

Table A.7: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Azure and
Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0.958 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0.0003
fog 0 0 0 0.008 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.8: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on GCP and
Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0.0005
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0.278 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Face and Adience can be found in Table A.9

Table A.9: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on MogFace and
Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0.0001 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0.120 0

elastic-transform 0 0 0 0 0 0 0.034 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on

TinaFace and Adience can be found in Table A.10

Table A.10: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on TinaFace
and Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.00001
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0.0001 0 0 0

jpeg-compression 0 0 0 0 0 0.047 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5

and Adience can be found in Table A.11
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Table A.11: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5 and
Adience

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.004
impulse-noise 0 0.00000
defocus-blur 0 0 0

glass-blur 0 0 0 0.005
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0.00000 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0.643
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on AWS

and CCD can be found in Table A.12

Table A.12: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on AWS and
CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00001

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Azure

and CCD can be found in Table A.13

Table A.13: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Azure and
CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0.00000 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on GCP
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and CCD can be found in Table A.14

Table A.14: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on GCP and
CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0.00000 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Mog-

Face and CCD can be found in Table A.15

Table A.15: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on MogFace
and CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0.012 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on

TinaFace and CCD can be found in Table A.16

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5

and CCD can be found in Table A.17

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on AWS

and MIAP can be found in Table A.18

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Azure

and MIAP can be found in Table A.19
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Table A.16: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on TinaFace
and CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0.00000 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0.016 0 0.065 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00000

Table A.17: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5 and
CCD

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0.822

Table A.18: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on AWS and
MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.018
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0.00000 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0.009 0 0 0 0

Table A.19: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Azure and
MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.211
impulse-noise 0.913 0.170
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0.001 0 0.00000
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0.203 0.730 0.061 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0.068

124



AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on GCP

and MIAP can be found in Table A.20

Table A.20: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on GCP and
MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.123
impulse-noise 0.131 0.963
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0.018 0.450 0.309 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0.006
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0.001 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0.492 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Mog-

Face and MIAP can be found in Table A.21

Table A.21: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on MogFace
and MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.247
impulse-noise 0.024 0.001
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0.575 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on

TinaFace and MIAP can be found in Table A.22

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5

and MIAP can be found in Table A.23

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on AWS

and UTK can be found in Table A.24
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Table A.22: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on TinaFace
and MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.571
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0.215 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0.0004 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.23: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5 and
MIAP

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0.002
impulse-noise 0.00000 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0.013 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0.00003 0 0

elastic-transform 0.014 0 0.007 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0.014 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.24: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on AWS and
UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0.181 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0.756
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Azure

and UTK can be found in Table A.25

Table A.25: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Azure and
UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0.272 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0.272
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0.084 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on GCP

and UTK can be found in Table A.26

Table A.26: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on GCP and
UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0.003
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0.357 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0.001 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Mog-

Face and UTK can be found in Table A.27

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on

TinaFace and UTK can be found in Table A.28

AP p-values for pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5

and UTK can be found in Table A.29
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Table A.27: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on MogFace
and UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.28: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on TinaFace
and UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0.031 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.29: AP. Pairwise Wilcoxon test with Bonferroni correction for corruption on Yolov5 and
UTK

gaussian-noise shot-noise impulse-noise defocus-blur glass-blur motion-blur zoom-blur snow frost fog brightness contrast elastic-transform pixelate

shot-noise 0
impulse-noise 0 0
defocus-blur 0 0 0

glass-blur 0 0 0 0
motion-blur 0 0 0 0 0
zoom-blur 0 0 0 0 0 0

snow 0 0 0 0 0 0 0
frost 0 0 0 0 0 0 0 0
fog 0 0 0 0 0 0 0 0 0

brightness 0 0 0 0 0 0 0 0 0 0
contrast 0 0 0 0 0 0 0 0 0 0 0

elastic-transform 0 0 0 0 0 0 0 0 0 0 0 0
pixelate 0 0 0 0 0 0 0 0 0 0 0 0 0

jpeg-compression 0 0 0 0 0 0 0 0 0 0 0 0.010 0 0
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A.1.3 AP — Age Comparison Claims

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on AWS and

Adience can be found in Table A.30

Table A.30: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on AWS and Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0
8-14 0 0

15-24 0 0 0
25-35 0 0 0 0
36-45 0 0 0 0 0
46-59 0 0.00000 0 0 0 0
60+ 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Azure and

Adience can be found in Table A.31

Table A.31: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Azure and Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0
8-14 0 0

15-24 0 0 0
25-35 0 0 0 0
36-45 0 0.00000 0 0 0.00000
46-59 0 0.118 0 0 0 0
60+ 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on GCP and

Adience can be found in Table A.32

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on MogFace

and Adience can be found in Table A.33
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Table A.32: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on GCP and Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0
8-14 0 0

15-24 0 0.00004 0
25-35 0 0 0 0.134
36-45 0.008 0 0 0 0
46-59 0 0 0 0 0 0
60+ 0 0 0 0 0 0 0.003

Table A.33: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on MogFace and
Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0
8-14 0 0

15-24 0 0 0.945
25-35 0 0 0.001 0.003
36-45 0 0 0 0 0
46-59 0 0.524 0 0 0 0
60+ 0.198 0 0 0 0 0 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and

Adience can be found in Table A.34

Table A.34: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and
Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0
8-14 0 0

15-24 0 0 0
25-35 0 0 0 0
36-45 0 0 0.0001 0 0
46-59 0 0 0.005 0 0 0
60+ 0.010 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and

Adience can be found in Table A.35

Table A.35: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and Adience

0-2 3-7 8-14 15-24 25-35 36-45 46-59

3-7 0.226
8-14 0 0
15-24 0 0.00000 0.00000
25-35 0.00000 0.0001 0 0.049
36-45 0 0 0 0 0
46-59 0 0 0.0002 0 0 0.0001
60+ 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on AWS and

CCD can be found in Table A.36

Table A.36: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on AWS and CCD

19-45 45-64

45-64 0
65+ 0 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Azure and

CCD can be found in Table A.37

Table A.37: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Azure and CCD

19-45 45-64

45-64 0
65+ 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on GCP and

CCD can be found in Table A.38

Table A.38: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on GCP and CCD

19-45 45-64

45-64 0
65+ 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on MogFace

and CCD can be found in Table A.39

Table A.39: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on MogFace and CCD

19-45 45-64

45-64 0
65+ 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and

CCD can be found in Table A.40

Table A.40: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and CCD

19-45 45-64

45-64 0
65+ 0 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and

CCD can be found in Table A.41

Table A.41: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and CCD

19-45 45-64

45-64 0
65+ 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on AWS and

MIAP can be found in Table A.42

Table A.42: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on AWS and MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Azure and

MIAP can be found in Table A.43

Table A.43: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Azure and MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0.00000 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on GCP and

MIAP can be found in Table A.44

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on MogFace

and MIAP can be found in Table A.45
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Table A.44: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on GCP and MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0 0

Table A.45: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on MogFace and
MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0.00000 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and

MIAP can be found in Table A.46

Table A.46: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and
MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0.001 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and

MIAP can be found in Table A.47

Table A.47: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and MIAP

Young Middle Older

Middle 0
Older 0 0

Unknown 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on AWS and

UTK can be found in Table A.48
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Table A.48: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on AWS and UTK

0-18 19-45 45-64

19-45 0
45-64 0 0
65+ 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Azure and

UTK can be found in Table A.49

Table A.49: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Azure and UTK

0-18 19-45 45-64

19-45 0
45-64 0 0.570
65+ 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on GCP and

UTK can be found in Table A.50

Table A.50: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on GCP and UTK

0-18 19-45 45-64

19-45 0
45-64 0 0
65+ 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on MogFace

and UTK can be found in Table A.51

Table A.51: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on MogFace and UTK

0-18 19-45 45-64

19-45 0
45-64 0 0
65+ 0 0 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and

UTK can be found in Table A.52

Table A.52: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on TinaFace and UTK

0-18 19-45 45-64

19-45 0
45-64 0.00000 0
65+ 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and

UTK can be found in Table A.53

Table A.53: AP. Pairwise Wilcoxon test with Bonferroni correction for Age on Yolov5 and UTK

0-18 19-45 45-64

19-45 0
45-64 0 0
65+ 0 0 0

A.1.4 AP — Gender Comparison Claims

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and

Adience can be found in Table A.54

Table A.54: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and
Adience

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Azure

and Adience can be found in Table A.55
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Table A.55: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Azure and
Adience

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and

Adience can be found in Table A.56

Table A.56: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and
Adience

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace

and Adience can be found in Table A.57

Table A.57: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace and
Adience

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace

and Adience can be found in Table A.58

Table A.58: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace and
Adience

Female

Male 0.203

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5

and Adience can be found in Table A.59
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Table A.59: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5 and
Adience

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and

CCD can be found in Table A.60

Table A.60: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and CCD

Female Male

Male 0
Other 0.680 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Azure

and CCD can be found in Table A.61

Table A.61: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Azure and CCD

Female Male

Male 0
Other 0.171 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and

CCD can be found in Table A.62

Table A.62: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and CCD

Female Male

Male 0
Other 0.003 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace

and CCD can be found in Table A.63
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Table A.63: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace and
CCD

Female Male

Male 0
Other 0.806 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace

and CCD can be found in Table A.64

Table A.64: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace and
CCD

Female Male

Male 0
Other 0.740 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5

and CCD can be found in Table A.65

Table A.65: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5 and
CCD

Female Male

Male 0
Other 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and

MIAP can be found in Table A.66

Table A.66: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Azure
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and MIAP can be found in Table A.67

Table A.67: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Azure and
MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and

MIAP can be found in Table A.68

Table A.68: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace

and MIAP can be found in Table A.69

Table A.69: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace and
MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace

and MIAP can be found in Table A.70

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5

and MIAP can be found in Table A.71

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and

UTK can be found in Table A.72
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Table A.70: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace and
MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

Table A.71: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5 and
MIAP

Predominantly Feminine Predominantly Masculine

Predominantly Masculine 0
Unknown 0 0

Table A.72: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on AWS and UTK

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Azure

and UTK can be found in Table A.73

Table A.73: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Azure and UTK

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and

UTK can be found in Table A.74

Table A.74: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on GCP and UTK

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace

and UTK can be found in Table A.75
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Table A.75: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on MogFace and
UTK

Female

Male 0.0001

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace

and UTK can be found in Table A.76

Table A.76: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on TinaFace and
UTK

Female

Male 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5

and UTK can be found in Table A.77

Table A.77: AP. Pairwise Wilcoxon test with Bonferroni correction for Gender on Yolov5 and
UTK

Female

Male 0

A.1.5 AP — Skin Type Comparison Claims

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on AWS

and CCD can be found in Table A.78

Table A.78: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on AWS and
CCD

Light Fitz

Dark Fitz 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on Azure

and CCD can be found in Table A.79

Table A.79: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on Azure and
CCD

Light Fitz

Dark Fitz 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on GCP

and CCD can be found in Table A.80

Table A.80: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on GCP and
CCD

Light Fitz

Dark Fitz 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on Mog-

Face and CCD can be found in Table A.81

Table A.81: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on MogFace
and CCD

Light Fitz

Dark Fitz 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on

TinaFace and CCD can be found in Table A.82

Table A.82: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on TinaFace
and CCD

Light Fitz

Dark Fitz 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type on Yolov5

and CCD can be found in Table A.83

Table A.83: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type on Yolov5 and
CCD

Light Fitz

Dark Fitz 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on AWS and CCD can be found in Table A.84

Table A.84: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on AWS and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0.567 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on Azure and CCD can be found in Table A.85

Table A.85: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on Azure and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0.076 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on GCP and CCD can be found in Table A.86

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on MogFace and CCD can be found in Table A.87
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Table A.86: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on GCP and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0 0

Table A.87: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on MogFace and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0.316 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on TinaFace and CCD can be found in Table A.88

Table A.88: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on TinaFace and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0.004 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Lighting on Yolov5 and CCD can be found in Table A.89

Table A.89: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Lighting on Yolov5 and CCD

Dark Fitz+Bright Dark Fitz+Dim Light Fitz+Bright

Dark Fitz+Dim 0
Light Fitz+Bright 0 0
Light Fitz+Dim 0 0.00004 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the
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interaction with Age and Gender on AWS and CCD can be found in Table A.90

Table A.90: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on AWS and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0.038 0.00000

Dark Fitz + 45-64 + Female 0.002 0 0.760
Dark Fitz + 45-64 + Male 0 0.00000 0 0
Dark Fitz + 45-64 + Other 0.061 0.763 0.004 0.002 0.016
Dark Fitz + 65+ + Female 0.00000 0.125 0.00000 0 0.050 0.263
Dark Fitz + 65+ + Male 0 0.002 0 0 0.934 0.029 0.125
Dark Fitz + 65+ + Other 0 0 0 0 0 0 0 0

Light Fitz + 19-45 + Female 0 0 0 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0 0 0 0 0 0 0 0.021
Light Fitz + 19-45 + Other 0 0 0.00005 0.00000 0 0 0 0 0 0.101 0.006

Light Fitz + 45-64 + Female 0.006 0 0.669 0.792 0 0.003 0 0 0 0 0 0.00000
Light Fitz + 45-64 + Male 0.003 0.016 0.0003 0.00000 0 0.530 0.002 0.00001 0 0 0 0 0.00000
Light Fitz + 45-64 + Other 0.006 0.0001 0.067 0.042 0.00000 0.001 0.00001 0.00000 0 0.212 0.070 0.697 0.037 0.001
Light Fitz + 65+ + Female 0.00000 0.197 0.00000 0 0.012 0.341 0.769 0.063 0 0 0 0 0 0.003 0.00001
Light Fitz + 65+ + Male 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Age and Gender on Azure and CCD can be found in Table A.91

Table A.91: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on Azure and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0.947 0

Dark Fitz + 45-64 + Female 0.136 0 0.389
Dark Fitz + 45-64 + Male 0 0.00000 0 0
Dark Fitz + 45-64 + Other 0.081 0.0002 0.116 0.236 0.00000
Dark Fitz + 65+ + Female 0.00000 0.00002 0.0002 0.00003 0 0.236
Dark Fitz + 65+ + Male 0 0.052 0 0 0.516 0.00001 0.00000
Dark Fitz + 65+ + Other 0 0 0 0 0 0 0 0

Light Fitz + 19-45 + Female 0 0 0 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0 0 0 0 0 0 0 0.012
Light Fitz + 19-45 + Other 0.082 0 0.162 0.016 0 0.009 0.00000 0 0 0 0.00000

Light Fitz + 45-64 + Female 0.902 0 0.990 0.143 0 0.078 0.00000 0 0 0 0 0.098
Light Fitz + 45-64 + Male 0 0 0.00001 0 0 0.202 0.947 0.00000 0 0 0 0.00000 0
Light Fitz + 45-64 + Other 0 0 0 0 0 0 0 0 0 0.023 0.004 0.00000 0 0
Light Fitz + 65+ + Female 0 0.141 0 0 0.00000 0.007 0.022 0.007 0 0 0 0 0 0.007 0
Light Fitz + 65+ + Male 0 0.082 0 0 0.104 0.00001 0.00000 0.589 0 0 0 0 0 0 0 0.010

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Age and Gender on GCP and CCD can be found in Table A.92

Table A.92: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on GCP and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0.003 0

Dark Fitz + 45-64 + Female 0.00003 0 0.553
Dark Fitz + 45-64 + Male 0 0.00000 0 0
Dark Fitz + 45-64 + Other 0.0004 0 0.169 0.050 0
Dark Fitz + 65+ + Female 0 0.008 0 0 0.340 0
Dark Fitz + 65+ + Male 0 0.528 0 0 0.0003 0 0.012
Dark Fitz + 65+ + Other 0 0 0 0 0 0 0 0

Light Fitz + 19-45 + Female 0 0 0 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0 0 0 0.00000 0 0 0 0
Light Fitz + 19-45 + Other 0 0 0 0 0 0 0 0 0 0.473 0.002

Light Fitz + 45-64 + Female 0 0 0.0002 0 0 0.281 0 0 0 0 0 0
Light Fitz + 45-64 + Male 0.239 0 0.030 0.008 0 0.002 0 0 0 0 0 0 0
Light Fitz + 45-64 + Other 0 0 0.00000 0.00000 0 0.0001 0 0 0 0.654 0.153 0.947 0.0003 0
Light Fitz + 65+ + Female 0.793 0 0.008 0.002 0 0.0004 0 0 0 0 0 0 0 0.343 0
Light Fitz + 65+ + Male 0.269 0 0.001 0.0001 0 0.0001 0 0 0 0 0 0 0 0.058 0 0.459

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Age and Gender on MogFace and CCD can be found in Table A.93

Table A.93: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on MogFace and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0.010 0

Dark Fitz + 45-64 + Female 0.475 0 0.003
Dark Fitz + 45-64 + Male 0 0.00001 0 0
Dark Fitz + 45-64 + Other 0.00004 0.085 0.00000 0.0002 0.0004
Dark Fitz + 65+ + Female 0.0002 0 0.00000 0.001 0 0.100
Dark Fitz + 65+ + Male 0 0.0003 0 0 0.321 0.0002 0
Dark Fitz + 65+ + Other 0 0 0 0 0 0 0 0

Light Fitz + 19-45 + Female 0 0 0 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0.0001 0 0 0 0 0 0 0
Light Fitz + 19-45 + Other 0 0 0.00000 0 0 0 0 0 0 0.011 0.026

Light Fitz + 45-64 + Female 0 0 0.324 0 0 0 0 0 0 0 0.00000 0.00001
Light Fitz + 45-64 + Male 0 0.152 0 0 0.004 0.020 0 0.005 0 0 0 0 0
Light Fitz + 45-64 + Other 0 0 0.00000 0 0 0 0 0 0 0.279 0.001 0.030 0.00001 0
Light Fitz + 65+ + Female 0.0003 0 0.00000 0.003 0 0.053 0.718 0 0 0 0 0 0 0 0
Light Fitz + 65+ + Male 0 0 0 0 0 0 0 0.00000 0 0 0 0 0 0 0 0
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AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Age and Gender on TinaFace and CCD can be found in Table A.94

Table A.94: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on TinaFace and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0.515 0

Dark Fitz + 45-64 + Female 0.767 0 0.657
Dark Fitz + 45-64 + Male 0 0.00002 0 0
Dark Fitz + 45-64 + Other 0.009 0 0.047 0.011 0
Dark Fitz + 65+ + Female 0.00000 0.020 0.00005 0.00000 0.00000 0.00000
Dark Fitz + 65+ + Male 0 0.001 0 0 0.389 0 0.00001
Dark Fitz + 65+ + Other 0 0 0 0 0 0 0 0

Light Fitz + 19-45 + Female 0 0 0 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0 0 0 0.00000 0 0 0 0
Light Fitz + 19-45 + Other 0.0001 0 0.006 0.0002 0 0.583 0 0 0 0 0.00001

Light Fitz + 45-64 + Female 0.0002 0 0.130 0.001 0 0.248 0 0 0 0 0 0.044
Light Fitz + 45-64 + Male 0 0.089 0.00000 0 0.00000 0 0.300 0.00002 0 0 0 0 0
Light Fitz + 45-64 + Other 0 0 0 0 0 0 0 0 0 0.001 0.00000 0 0 0
Light Fitz + 65+ + Female 0.00001 0.0002 0.001 0.00002 0 0.00000 0.352 0.00000 0 0 0 0 0 0.020 0
Light Fitz + 65+ + Male 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Skin Type and the

interaction with Age and Gender on Yolov5 and CCD can be found in Table A.95

Table A.95: AP. Pairwise Wilcoxon test with Bonferroni correction for Skin Type and the interac-
tion with Age and Gender on Yolov5 and CCD

Dark Fitz + 19-45 + Female Dark Fitz + 19-45 + Male Dark Fitz + 19-45 + Other Dark Fitz + 45-64 + Female Dark Fitz + 45-64 + Male Dark Fitz + 45-64 + Other Dark Fitz + 65+ + Female Dark Fitz + 65+ + Male Dark Fitz + 65+ + Other Light Fitz + 19-45 + Female Light Fitz + 19-45 + Male Light Fitz + 19-45 + Other Light Fitz + 45-64 + Female Light Fitz + 45-64 + Male Light Fitz + 45-64 + Other Light Fitz + 65+ + Female

Dark Fitz + 19-45 + Male 0
Dark Fitz + 19-45 + Other 0 0

Dark Fitz + 45-64 + Female 0.881 0 0
Dark Fitz + 45-64 + Male 0 0.933 0 0
Dark Fitz + 45-64 + Other 0.029 0.198 0.00000 0.026 0.224
Dark Fitz + 65+ + Female 0 0.001 0 0 0.001 0.003
Dark Fitz + 65+ + Male 0 0 0 0 0 0 0
Dark Fitz + 65+ + Other 0 0.00000 0 0 0.00000 0.00000 0.00000 0.142

Light Fitz + 19-45 + Female 0 0 0.490 0 0 0 0 0 0
Light Fitz + 19-45 + Male 0 0 0.710 0 0 0 0 0 0 0.502
Light Fitz + 19-45 + Other 0 0 0.014 0 0 0 0 0 0 0.028 0.008

Light Fitz + 45-64 + Female 0.006 0 0 0.006 0.00000 0.324 0 0 0 0 0 0
Light Fitz + 45-64 + Male 0 0.050 0 0 0.067 0.625 0.00000 0 0.00000 0 0 0 0.0003
Light Fitz + 45-64 + Other 0.00004 0 0.093 0.00004 0 0.00000 0 0 0 0.150 0.095 0.708 0.00000 0
Light Fitz + 65+ + Female 0 0.634 0 0 0.654 0.341 0.002 0 0.00000 0 0 0 0.0003 0.408 0
Light Fitz + 65+ + Male 0 0 0 0 0 0.00000 0.001 0 0.0001 0 0 0 0 0 0 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on AWS

and CCD can be found in Table A.96

Table A.96: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on AWS and
CCD

Bright

Dim 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on Azure

and CCD can be found in Table A.97

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on GCP

and CCD can be found in Table A.98
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Table A.97: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on Azure and
CCD

Bright

Dim 0

Table A.98: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on GCP and CCD

Bright

Dim 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on MogFace

and CCD can be found in Table A.99

Table A.99: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on MogFace and
CCD

Bright

Dim 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on TinaFace

and CCD can be found in Table A.100

Table A.100: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on TinaFace and
CCD

Bright

Dim 0

AP p-values for pairwise Wilcoxon test with Bonferroni correction for Lighting on Yolov5

and CCD can be found in Table A.101
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Table A.101: AP. Pairwise Wilcoxon test with Bonferroni correction for Lighting on Yolov5 and
CCD

Bright

Dim 0
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